Bài 9 trang 40 sách giáo khoa hình học lớp 12


Bài 9. Căt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng a√2.

Bài 9. Căt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng a√2.

a) Tính diện tích xuang quanh, diện tích đáy và thể tích của khối nón twong ứng.

b) Cho một dây cung BC và đường tròn đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng chứa đáy hình nón một góc 60. Tính diện tích hình vuông và mặt phẳng đáy.

Hướng dẫn giải:

a) Cạnh huyền chính bằng đường kính đáy do vậy bán kính đáy r =  và đường cao h = r, đwòng sinh l = a.

Vậy Sxq = πrl =  ( đơn vị diện tích)

      Sđáy =  =  ( đơn vị diện tích);

      Vnón =   ( đơn vị thể tích)

b) Gọi tâm đáy là O và trung điểm cạnh BC là I.

Theo giả thiết,  = 600.

Ta có diện tích ∆ SBC là: S = (SI.BC)/2

Ta có SO + SI.sin600 = .

Vậy  .

Ta có ∆ OIB vuông ở I và BO = r = ;

                                    OI = SI.cos600 = .

                                    

Vậy BI =  và BC = .

Do đó S = (SI.BC)/2 =  (đơn vị diện tích)

 
 
 

>> Khai giảng Luyện thi ĐH-THPT Quốc Gia 2017 bám sát cấu trúc Bộ GD&ĐT bởi các Thầy Cô uy tín, nổi tiếng đến từ các trung tâm Luyện thi ĐH hàng đầu, các Trường THPT Chuyên và Trường Đại học.

Bài viết liên quan