Bài 4 trang 119 sgk Hình học 11


Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, BC= b, CC' = c...

Bài 4. Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB =  a, BC= b, CC' = c\).

a) Tính khoảng cách từ \(B\) đến mặt phẳng \((ACC'A')\).

b) Tính khoảng cách giữa hai đường thẳng \(BB'\) và \(AC'\).

Giải

(H.3.65)

a) Trong \((ABCD)\) kẻ \(BH\) vuông góc với \(AC\)       (1)

\(CC'\bot (ABCD)\Rightarrow CC'\bot BH\)                              (2)

Từ (1) và (2) suy ra \(BH\bot (ACC'A')\).

\(BH\) là đường cao trong tam giác vuông \(ABC\) nên ta có:

\({1 \over {B{H^2}}} = {1 \over {A{B^2}}} + {1 \over {B{C^2}}}\)

\(\Rightarrow BH=\frac{ab}{\sqrt{a^{2}+b^{2}}}.\)

b) \(AC'\subset (ACC'A')\), mà \(BB' // (ACC'A')\) \(\Rightarrow d(BB', AC') = d(B,(ACC'A'))=BH=\frac{ab}{\sqrt{a^{2}+b^{2}}}.\)

(Chú ý: Khoảng cách giữa hai đường thẳng chéo nhau \(a\) và \(b\) bằng khoảng cách giữa \(a\) và \(mp (P)\) chứa \(b\) đồng thời song song với \(a\)).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu