Bài 2 trang 119 sgk hình học 11


Cho tứ diện S.ABC có SA vuông góc với mặt phẳng (ABC). Gọi H, K lần lượt là trực tâm của tam giác ABC và SBC...

2. Cho tứ diện S.ABC có SA vuông góc với mặt phẳng (ABC). Gọi H, K lần lượt là trực tâm của tam giác ABC và SBC.

a) Chứng minh ba đường thẳng AH, SK, BC đồng quy.

b) Chứng minh rằng SC vuông góc với mặt phẳng (BHK) và HK vuông góc với mặt phẳng (SBC).

c) Xác định đường vuông góc chung của BC và SA.

Hướng dẫn.

(H.3.63) 

a) Gọi E = AH ∩ BC. Chứng minh được BC ⊥ (SAE) => BC ⊥ SE. K là trực tâm của tam giác SBC => SE qua K => AH, BC, SK đồng quy tại E.

b) Chứng minh SC vuông với BH và BK.

c) AE vuông góc với BC và SA => AE là đường vuông góc chung của BC và SA.

>>>>> Khai giảng Luyện thi Trắc nghiệm THPT Quốc gia 2018 - Tất cả các môn bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu