Bài 3 trang 119 sgk Hình học 11


Cho hình lập phương ABCD.A'B'C'D'cạnh a....

Bài 3. Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Chứng minh rằng các khoảng cách từ các điểm \(B, C, D, A', B', D'\) đến đường chéo \(AC'\) đều bằng nhau. Tính khoảng cách đó.

Giải

(H.3.64) 

Gọi \(K\) là hình chiếu của \(B\) trên \(AC'\). 

Xét tam giác \(ABC'\) vuông tại \(B\), ta có: 

\(\frac{1}{BK^{2}}=\frac{1}{BA^{2}}+\frac{1}{BC^{2}}=\frac{1}{a^{2}}+\frac{1}{(a\sqrt{2})^{2}}=\frac{3}{2a^{2}}\)

\(\Rightarrow BK=\frac{a\sqrt{6}}{3}.\) 

Ta có:

\(\Delta ABC' = \Delta C'CA = \Delta ADC' = \Delta AA'C' = \Delta C'B'A = \Delta C'D'A(c.g.c)\)

Do đó khoảng cách từ \(B, C, D, A', B', D'\) tới \(AC'\) đều bằng \( \frac{a\sqrt{6}}{3}\) vì chúng đều là chiều cao của các tam giác vuông bằng nhau.

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu