Bài tập 4 - Trang 113- SGK Toán Giải tích 12

Bình chọn:
4.5 trên 20 phiếu

4. Sử dụng phương pháp tích phân tưng phần, hãy tính tích phân:

Bài 4. Sử dụng phương pháp tích phân tưng phần, hãy tính tích phân:

a)\(\int_{0}^{\frac{\pi}{2}}(x+1)sinxdx\)   ;      b) \(\int_{1}^{e}x^{2}lnxdx\)

c)\(\int_{0}^{1}ln(1+x))dx\)      ;       d)\(\int_{0}^{1}(x^{2}-2x+1)e^{-x}dx\)

 Hướng dẫn giải:

a) Đặt \(u=x+1\); \(dv=sinxdx\)  \(\Rightarrow du = dx ;v = -cosx\). Khi đó:

 \(\int_{0}^{\frac{\pi}{2}}(x+1)sinxdx=-(x+1)cosx|_{0}^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}}cosxdx\)

\(=1 +sinx|_{0}^{\frac{\pi}{2}}=2\)

b)\(\frac{1}{9}(2e^{3}+1)\). HD:  Đặt u = ln x ,dv = x2dx

c) Đặt 

\(\eqalign{
& u = \ln x \Rightarrow du = {1 \over x}dx \cr
& dv = {x^2}dx \Rightarrow v = {{{x^3}} \over 3} \cr} \)

Do đó ta có:

\(\int\limits_1^e {{x^2}\ln xdx = {{{x^3}} \over 3}.lnx\left| {_1^e - \int\limits_1^e {{{{x^3}} \over 3}dx = {{{e^3}} \over 3} - \left[ {{{{x^3}} \over 9}} \right]} \left| {_1^e} \right.} \right.}\)\(  = {{{e^3}} \over 3} - {{{e^3} - 1} \over 9} = {{2{e^3} + 1} \over 9}\)

d) Ta có :

\(\int_{0}^{1}(x^{2}-2x-1)e^{x}dx= \int_{0}^{1}(x^{2}-1)e^{-x}dx\)\(-2\int_{0}^{1}x.e^{-x}dx\)

Đặt \(u= {x^2} - 1\); \(dv{\rm{ }} = {\rm{ }}{e^{ - x}}dx\) \(\Rightarrow du = 2xdx ;v = -e^{-x}\) Khi đó :

\(\int_{0}^{1}(x^{2}-1)e^{-x}=-e^{-x}(x^{2}-1)|_{0}^{1}+2\int_{0}^{1}xe^{-x}dx\)

\(=-1+2\int_{0}^{1}x.e^{-x}dx\)

 Vậy : \(\int_{0}^{1}(x^{2}-2x+1)e^{-x}dx\) =\(=-1+2\int_{0}^{1}x.e^{-x}dx-2\int_{0}^{1}x.e^{-x}dx\) = -1

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan