Bài tập 2 - Trang 112 - SGK Giải tích 12

Bình chọn:
3.8 trên 19 phiếu

2.Tính các tích phân.

Bài 2. Tính các tích phân sau:

a) \(\int_0^2 {\left| {1 - x} \right|} dx\)                               b) \(\int_0^{{\pi  \over 2}} s i{n^2}xdx\)

c) \(\int_0^{ln2} {{{{e^{2x + 1}} + 1} \over {{e^x}}}} dx\)                            d) \(\int_0^\pi  s in2xco{s^2}xdx\)

Hướng dẫn giải:

a) Ta có \(1 - x = 0 ⇔ x = 1\).

\(\int_0^2 {\left| {1 - x} \right|} dx = \int_0^1 {\left| {1 - x} \right|} dx + \int_1^2 {\left| {1 - x} \right|} dx\)

\(=  - \int_0^1 {(1 - x)} d(1 - x) + \int_1^2 {(x - 1)} d(x - 1)\)

\( =  - {{{{(1 - x)}^2}} \over 2}|_0^1 + {{{{(x - 1)}^2}} \over 2}|_1^2 = {1 \over 2} + {1 \over 2} = 1\)

b) \(\int_0^{{\pi  \over 2}} s i{n^2}xdx\)

\( = {1 \over 2}\int_0^{{\pi  \over 2}} {(1 - cos2x)} dx\)

\( = {1 \over 2}\left( {x - {1 \over 2}sin2x} \right)|_0^{{\pi  \over 2}} = {\pi  \over 4}\)

c) \(\int_0^{ln2} {{{{e^{2x + 1}} + 1} \over {{e^x}}}} dx = \int_0^{ln2} {({e^{x + 1}} + {e^{ - x}})} dx\)

\( = ({e^{x + 1}} - {e^{ - x}})|_0^{ln2} = e + {1 \over 2}\)

d) Ta có : \(sin2xcos^2x\) = \({1 \over 2}sin2x(1 + cos2x) = {1 \over 2}sin2x + {1 \over 4}sin4x\)

Do đó : \(\eqalign{
& \int_0^\pi s in2xco{s^2}xdx = \int_0^\pi {({1 \over 2}sin2x + {1 \over 4}sin4x)} dx \cr
& = ( - {1 \over 4}cos2x - {1 \over {16}}cos4x)|_0^\pi \cr
& = - {1 \over 4} - {1 \over {16}} + {1 \over 4} + {1 \over {16}} = 0 \cr} \).

loigiaihay.com

 

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan