Bài tập 6 - Trang 113 - SGK Giải tích 12


6. Tính tích phân bằng hai phương pháp

6. Tính tích phân \(\int_{0}^{1}x(1-x)^{5}dx\) bằng hai phương pháp:

a) Đổi biến số : u = 1 - x;

b) Tính tích phân từng phần.

Hướng dẫn giải:

a) Đặt u = 1 - x => x = 1 - u và dx = - du.

Khi x = 0 thì u = 1, khi x = 1 thì u = 0. Khi đó:

\(\int_{0}^{1}x(1-x)^{5}dx=\int_{0}^{1}(1-u)u^{5}du=(\frac{1}{6}u^{6}-\frac{1}{7}u^{7})|_{0}^{1}=\frac{1}{42}.\)

b) Đặt u = x; dv = (1 – x)5dx

=> du = dx; \(v=-\frac{(1+x)^{6}}{6}\). Khi đó:

\(\int_{0}^{1}x(1-x)^{5}dx=-\frac{x(1-x)^{6}}{6}|_{0}^{1}+\frac{1}{6}\int_{0}^{1}(1-x)^{6}dx\)

                                  \(=-\frac{1}{6}\int_{0}^{1}(1-x)^{6}d(1-x)=-\frac{1}{42}(1-x)^{7}|_{0}^{1}=\frac{1}{42}\).

>> Khai giảng Luyện thi ĐH-THPT Quốc Gia 2017 bám sát cấu trúc Bộ GD&ĐT bởi các Thầy Cô uy tín, nổi tiếng đến từ các trung tâm Luyện thi ĐH hàng đầu, các Trường THPT Chuyên và Trường Đại học..