Bài tập 6 - Trang 113 - SGK Giải tích 12

Bình chọn:
3 trên 4 phiếu

6. Tính tích phân bằng hai phương pháp

Bài 6. Tính tích phân \(\int_{0}^{1}x(1-x)^{5}dx\) bằng hai phương pháp:

a) Đổi biến số : \(u = 1 - x\);

b) Tính tích phân từng phần.

Giải:

a) Đặt \(u = 1 - x \Rightarrow x = 1 - u \Rightarrow dx = - du\).

Khi \(x = 0\) thì \(u = 1\), khi \(x = 1\) thì \(u = 0\). Khi đó:

\(\int_{0}^{1}x(1-x)^{5}dx=\int_{0}^{1}(1-u)u^{5}du=(\frac{1}{6}u^{6}-\frac{1}{7}u^{7})|_{0}^{1}\)\(=\frac{1}{42}.\)

b) Đặt \(u = x\); \(dv = (1 – x)^5dx\)

\(\Rightarrow du = dx\); \(v=-\frac{(1+x)^{6}}{6}\). Khi đó:

\(\int_{0}^{1}x(1-x)^{5}dx=-\frac{x(1-x)^{6}}{6}|_{0}^{1}+\frac{1}{6}\int_{0}^{1}(1-x)^{6}dx\)

                                  \(=-\frac{1}{6}\int_{0}^{1}(1-x)^{6}d(1-x)=-\frac{1}{42}(1-x)^{7}|_{0}^{1}=\frac{1}{42}\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan