Bài tập 2 - Trang 121 - SGK Giải tích 12

Bình chọn:
4.1 trên 14 phiếu

Tính diện tích hình phẳng giới hạn bởi các đường:

Bài 2. Tính diện tích hình phẳng giới hạn bởi đường cong \(y = {x^2} + 1\), tiếp tuyến với đường thẳng này

tại điểm \(M(2;5)\) và trục \(Oy\).

Hướng dẫn giải:

Phương trình tiếp tuyến là \(y = 4x - 3\).

Phương trình hoành độ giao điểm

 \({x^2} + 1 =4x - 3 \Leftrightarrow {x^2} - 4x + 4= 0 ⇔ x = 2\).

Do đó diện tích phải tìm là:

\(S=\int_{0}^{2}|x^{2}+1 -4x+3|dx=\int_{0}^{2}(x^{2}-4x+4)dx\)

\(=\frac{8}{3}=2\tfrac{2}{3}\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan