Bài tập 3 - Trang 121 - SGK Giải tích 12


3. Parabol chia hình tròn có tâm tại gốc tọa độ, bán kính thành hai phần. Tìm tỉ số diện tích của chúng

Bài 3. Parabol \(y = {{{x^2}} \over 2}\) chia hình tròn có tâm tại gốc tọa độ, bán kính \(2\sqrt2\) thành hai phần. Tìm tỉ số diện tích của chúng.

Hướng dẫn giải:

Đường tròn đã cho có phương trình \({x^{2}} + {\rm{ }}{y^2} = {\rm{ }}8\)

Từ đó ta có: \(y =  \pm \sqrt {8 + {x^2}} \)

Tọa độ giao điểm của \((C)\) và \((P)\) thỏa mãn hệ: 

\(\left\{ \matrix{
{x^2} = 2y \hfill \cr
{x^2} + {y^2} = 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{y^2} + 2y - 8 = 0 \hfill \cr
{x^2} = 2y \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
y = 2 \hfill \cr
x = \pm 2 \hfill \cr} \right.\)

\(S_1 = 2\int_0^2 {\left( {\sqrt {8 - {x^2}}  - {{{x^2}} \over 2}} \right)} d{\rm{x}}\)

\(= 2\int\limits_0^2 {\sqrt {8 - {x^2}} dx - \left[ {{{{x^3}} \over 3}} \right]} \left| {_0^2 = 2\int\limits_0^2 {\sqrt {8 - {x^2}} } dx - {8 \over 3}} \right.\)

Đặt \(x = 2\sqrt 2 \sin t \Rightarrow dx = 2\sqrt 2 {\mathop{\rm costdt}\nolimits} \)

Đổi cận: \(\eqalign{
& x = 0 \Rightarrow t = 0 \cr
& x = 2 \Rightarrow t = {\pi \over 4} \cr} \)

\({S_1} = 2\int\limits_0^{{\pi  \over 4}} {\sqrt {8 - 8{{\sin }^2}t} .2\sqrt 2 {\rm{costdt - }}{8 \over 3}} \)

\( = 16\int\limits_0^{{\pi  \over 4}} {{{\cos }^2}tdt - {8 \over 3}} \)\( = 8\int\limits_0^{{\pi  \over 4}} {(1 + cos2t)dt - {8 \over 3}} \)

\(= [8t + 4sint2t]|_0^{{\pi  \over 4}} - {8 \over 3} = 2\pi  + {4 \over 3}\)

Diện tích hình tròn là: \(\pi R^2=8\pi\)

và  \({S_2} = 8\pi  - {S_1}=6\pi+{4\over 3}.\)

Vậy  \({{{S_2}} \over {{S_1}}} = {{9\pi  - 2} \over {3\pi  + 2}}\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu