Bài tập 1 - Trang 121 - SGK Giải tích 12


1. Tính diện tích hình phẳng giới hạn bởi các đường:

Bài 1. Tính diện tích hình phẳng giới hạn bởi các đường:

a) \(y={x^2},y =x + 2\);   

b) \(y = |lnx|, y = 1\);

c) \(y = {\left( x-6 \right)}^2,y = 6x-{x^2}\)

Hướng dẫn giải :

a) Phương trình hoành độ giao điểm \(f(x) = x^2-x -2 =0 ⇔ x = -1\) hoặc \(x = 2\).

Diện tích hình phẳng cần tìm là :

\(S=\int_{-1}^{2}\left |x^{2}- x- 2 \right |dx = \left | \int_{-1}^{2}\left (x^{2}- x- 2 \right ) dx \right |\)

    \(=\left |\frac{x^{3}}{3}-\frac{x^{2}}{2}-2x|_{-1}^{2} \right |=\left |\frac{8}{3}-2-4-(\frac{1}{3}-\frac{1}{2}+2) \right |\)\(=4\tfrac{1}{2}\)

b) Phương trình hoành độ giao điểm: 

\(f(x) = 1 - ln|x| = 0  ⇔ lnx = ± 1\)

\(⇔ x = e\) hoặc \(x = \frac{1}{e}\)                                                    

        \(y = ln|x| = lnx\) nếu \(lnx ≥ 0\) tức là \(x ≥ 1\).

 hoặc  \(y = ln|x| = - lnx\) nếu \(lnx < 0\), tức là \(0 < x < 1\).

Dựa vào đồ thị hàm số vẽ ở hình trên ta có diện tích cần tìm là :  

\(S=\int_{\frac{1}{e}}^{e}|1- ln|x||dx =\int_{\frac{1}{e}}^{1}(1+lnx)dx \)

\(+\int_{1}^{e}(1-lnx)dx\)

     \(= x|_{\frac{1}{e}}^{1}+\int_{\frac{1}{e}}^{1}lnxdx +x|_{1}^{e}-\int_{1}^{e}lnxdx\)

     \(=-\frac{1}{e}+e+\int_{\frac{1}{e}}^{1}lndx-\int_{1}^{e}lnxdx\)

Ta có  \(∫lnxdx = xlnx - ∫dx = xlnx  –  x  + C\),  thay vào trên ta được  :

\(S=e-\frac{1}{e}+(xlnx-x)|_{\frac{1}{e}}^{1}- (xlnx-x)|_{1}^{e}\)\(=e+\frac{1}{e}-2\)

c) Phương trình hoành độ giao điểm là:

\(f\left( x \right) =6x-{x^2}-{\left( {x -6} \right)^2} = - 2({x^2}-9x+ 18)\)\(=0\)

\(⇔  - 2({x^2}-9x+ 18) ⇔ x = 3\) hoặc \(x = 6\).

Diện tích cần tìm là:

\(S=\int_{3}^{6}|-2(x^{2}-9x+18)|dx\)

\(=|2\int_{3}^{6}(x^{2}-9x+18)dx|\)

\(=\left |2(\frac{x^{3}}{3}-\frac{9}{2}x^{2}+18x)|_{3}^{6} \right |=9\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu