Bài 35 trang 79 - Sách giáo khoa toán 8 tập 2

Bình chọn:
4.7 trên 19 phiếu

Bài 35 Chứng minh rằng nếu tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k thì tỉ số của hai đường phân giác tương ứng của chúng cũng bằng K

Bài 35 Chứng minh rằng nếu tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\) theo tỉ số \(k\) thì tỉ số của hai đường phân giác tương ứng của chúng cũng bằng \(k\).

Giải:

\(∆A'B'C' ∽ ∆ABC\) theo tỉ số \(k= \frac{A'B'}{AB}\)

\( \Rightarrow \widehat {BAC} = \widehat {B'A'C'}\)   (1)

\(AD\) là phân giác góc \(\widehat {BAC}\) nên \(\widehat {BAD} = {1 \over 2}\widehat {BAC}\)     (2)

\(A'D'\) là phân giác góc \(\widehat {B'A'C'}\) nên \(\widehat {B'A'D'} = {1 \over 2}\widehat {B'A'C'}\)   (3)

Từ (1),(2) và (3) suy ra: \(\widehat{BAD}\) = \(\widehat{B'A'D'}\)

Xét \(∆A'B'D'\) và \(∆ABD\) có:

+) \(\widehat{B}\) = \(\widehat{B'}\) 

+) \(\widehat{BAD}\) = \(\widehat{B'A'D'}\)

\(\Rightarrow ∆A'B'D' ∽ ∆ABD\) theo tỉ số \( \frac{A'B'}{AB}\)= \(\frac{A'D'}{AD}=k\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan