Lý thuyết Hàm số bậc hai


Hàm số bậc hai được cho bởi công thức.

1. Hàm số bậc hai là hàm số có công thức: y = ax2 + bx + c (a ≠ 0) có miền xác định D = R.

Bảng biến thiên: 

Đồ thị hàm số y = ax2 + bx + c (a ≠ 0) là đường thẳng parabol có: đỉnh \(I\left( { - {b \over {2{\rm{a}}}}; - {\Delta  \over {4{\rm{a}}}}} \right)\), trục đối xứng là đường thẳng \(x =  - {b \over {2{\rm{a}}}}\).

Giao điểm với trục : A(0; c). Hoành độ giao điểm với trục hoành là nghiệm của ax2 + bx + c = 0.

Đồ thị hàm số y = ax2 + bx + c (a ≠ 0) suy ra từ đồ thị hàm số y = ax2 bằng cách:

+ Tịnh tiến song song với trục hoành \(\left| {{b \over {2{\rm{a}}}}} \right|\) đơn vị bên trái nếu \({b \over {2{\rm{a}}}}\)  > 0, về bên phải nếu \({b \over {2{\rm{a}}}}\) < 0.

+ Tịnh tiến song song với trục tung \(\left| { - {\Delta  \over {4{\rm{a}}}}} \right|\) đơn vị lên trên nếu \({ - {\Delta  \over {4{\rm{a}}}}}\) > 0, và xuống dưới nếu \({ - {\Delta  \over {4{\rm{a}}}}}\) < 0.

>>>>> Học tốt lớp 10 các môn Toán, Lý, Anh, Hóa năm 2017 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu