Câu 4 trang 25 sgk hình học 12


Cho hình chóp S.ABC. Trên các đoạn thẳng SA, SB, SC lần lượt lấy ba điểm A’, B’, C’ khác với S. Chứng minh rằng:

Câu 4: Cho hình chóp \(S.ABC\). Trên các đoạn thẳng \(SA, SB, SC\) lần lượt lấy ba điểm \(A’, B’, C’\) khác với \(S\). Chứng minh rằng

\({{{V_{S.A'B'C'}}} \over {{V_{S.ABC}}}} = {{SA'} \over {SA}} \cdot {{SB'} \over {SB}} \cdot {{SC'} \over {SC}}\)

Hướng dẫn giải: 

Gọi \(h\) và \(h’\) lần lượt là chiều cao hạ từ \(A, A’\) đến mặt phẳng \((SBC)\).

Gọi \(S_1\) và \(S_2\) theo thứ tự là diện tích các tam giác \(SBC\) và \(SB’C’\).

Khi đó ta có \({{h'} \over h} = {{SA'} \over {SA}}\) 

và \({{{1 \over 2}sin(B'SC').SB'.SC'} \over {{1 \over 2}sin(BSC).SB.SC}} = {{SB'} \over {SB}}.{{SC'} \over {SC}}\)

Suy ra \({{{V_{S.A'B'C'}}} \over {{V_{S.ABC}}}} = {{{V_{A'.SB'C'}}} \over {{V_{A.SBC}}}} = {{{1 \over 3}h'{S_2}} \over {{1 \over 3}h{S_1}}} = {{SA'} \over {SA}} \cdot {{SB'} \over {SB}} \cdot {{SC'} \over {SC}}\) 

Đó là điều phải chứng minh.

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu