Câu 1 trang 25 sgk hình học 12


Tính thể tích khối tứ diện đều cạnh a.

Câu 1. Tính thể tích khối tứ diện đều cạnh \(a\).

Giải: 

Cho tứ diện đều \(ABCD\). Hạ đường cao \(AH\) của tứ diện thì do các đường xiên \(AB, AC, AD\) bằng nhau nên các hình chiếu của chúng: \(HB, HC, HD\) bằng nhau. Do \(BCD\) là tam giác đều nên \(H\) là trọng tâm của tam giác \(BCD\).

Do đó \(BH = {2 \over 3}.{{\sqrt 3 } \over 2}a = {{\sqrt 3 } \over 3}a\)

Từ đó suy ra: \(AH^2 \)=\( a^2\)– \(BH^2 \)=\({{6{a^2}} \over 9}\)

Nên \(AH = {{\sqrt 6 } \over 3}a\)

Thể tích tứ diện đó \(V={1 \over 3} \cdot {1 \over 2} \cdot {{\sqrt 3 } \over 2}{a^2} \cdot {{\sqrt 6 } \over 3}a = {a^3}{{\sqrt 2 } \over {12}}.\) 

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu