Bài 5 trang 10 sách sgk giải tích 12


Chứng minh các bất đẳng thức sau:

Bài 5. Chứng minh các bất đẳng thức sau:

a)      tanx > x (0 < x < );                               b) tanx > x +  (0 < x < ).

Hướng dẫn giải:

a) Xét hàm số y = f(x) = tanx – x với x ∈ [0 ; ).

         Ta có : y’ =  - 1 ≥ 0, x ∈ [0 ; ); y’ = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ; ).

         Từ đó ∀x ∈ (0 ; ) thì f(x) > f(0) ⇔ tanx – x > tan0 – 0 = 0 hay tanx > x.

         b) Xét hàm số y = g(x) = tanx – x - . với x ∈ [0 ; ).

         Ta có : y’ =  - 1 - x2 = 1 + tan2x - 1 - x= tan2x - x2

                                       = (tanx - x)(tanx + x),  ∀x ∈ [0 ; ).

         Vì ∀x ∈ [0 ; ) nên tanx + x ≥ 0 và tanx - x >0 (theo câu a).

         Do đó y' ≥ 0, ∀x ∈ [0 ; ).

         Dễ thấy y' = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ; ). Từ đó : ∀x ∈ [0 ; ) thì g(x) > g(0) ⇔ tanx – x -  > tan0 - 0 - 0 = 0 hay  tanx > x + .

>> Khai giảng Luyện thi ĐH-THPT Quốc Gia 2017 bám sát cấu trúc Bộ GD&ĐT bởi các Thầy Cô uy tín, nổi tiếng đến từ các trung tâm Luyện thi ĐH hàng đầu, các Trường THPT Chuyên và Trường Đại học.

Bài viết liên quan