Bài 4 trang 56 sgk giải tích 12

Bình chọn:
4.7 trên 18 phiếu

Bài 4. Cho a, b là những số thực dương. Rút gọn các biểu thức sau:

Bài 4. Cho \(a, b\) là những số thực dương. Rút gọn các biểu thức sau:

a) \({{{a^{{4 \over 3}}}\left( {{a^{{{ - 1} \over 3}}} + {a^{{2 \over 3}}}} \right)} \over {{a^{{1 \over 4}}}\left( {{a^{{3 \over 4}}} + {a^{{{ - 1} \over 4}}}} \right)}}\) ;

b) \({{{b^{{1 \over 5}}}\left( {\root 5 \of {{b^4}}  - \root 5 \of {{b^{ - 1}}} } \right)} \over {{b^{{2 \over 3}}}\left( {\root 3 \of b  - \root 3 \of {{b^{ - 2}}} } \right)}};\)

c) \({{{a^{{1 \over 3}}}{b^{{{ - 1} \over 3}}} - {a^{{{ - 1} \over 3}}}{b^{{1 \over 3}}}} \over {\root 3 \of {{a^2}}  - \root 3 \of {{b^2}} }}\);

d) \({{{a^{{1 \over 3}}}\sqrt b  + {b^{{1 \over 3}}}\sqrt a } \over {\root 6 \of a  + \root 6 \of b }}\)

Giải

a)  \({{{a^{{4 \over 3}}}\left( {{a^{{{ - 1} \over 3}}} + {a^{{2 \over 3}}}} \right)} \over {{a^{{1 \over 4}}}\left( {{a^{{3 \over 4}}} + {a^{{{ - 1} \over 4}}}} \right)}}\) \( = {{{a^{{4 \over 3}}}{a^{{{ - 1} \over 3}}} + {a^{{4 \over 3}}}{a^{{2 \over 3}}}} \over {{a^{{1 \over 4}}}{a^{{3 \over 4}}} + {a^{{1 \over 4}}}{a^{{{ - 1} \over 4}}}}}\)

\( = {{{a^{{4 \over 3} - {1 \over 3}}} + {a^{{4 \over 3} + {2 \over 3}}}} \over {{a^{{1 \over 4} + {3 \over 4}}} + {a^{{1 \over 4} + {{ - 1} \over 4}}}}} = {{{a^1} + {a^2}} \over {{a^1} + {a^0}}} = {{a\left( {1 + a} \right)} \over {a + 1}} = a\)

b) \({{{b^{{1 \over 5}}}\left( {\root 5 \of {{b^4}}  - \root 5 \of {{b^{ - 1}}} } \right)} \over {{b^{{2 \over 3}}}\left( {\root 3 \of b  - \root 3 \of {{b^{ - 2}}} } \right)}} = {{{b^{{1 \over 5}}}\left( {{b^{{4 \over 5}}} - {b^{{{ - 1} \over 5}}}} \right)} \over {{b^{{2 \over 3}}}\left( {{b^{{1 \over 3}}} - {b^{{{ - 2} \over 3}}}} \right)}}\)

\(= {{{b^{{1 \over 5} - {4 \over 5}}} - {b^{{1 \over 5} - {1 \over 5}}}} \over {{b^{{2 \over 3} + {1 \over 3}}} - {b^{{2 \over 3} - {2 \over 3}}}}} = {{b - 1} \over {b - 1}} = 1\) ( Với điều kiện b ≠ 1)

c) \({{{a^{{1 \over 3}}}{b^{{{ - 1} \over 3}}} - {a^{{{ - 1} \over 3}}}{b^{{1 \over 3}}}} \over {\root 3 \of {{a^2}}  - \root 3 \of {{b^2}} }}\) \(= {{{a^{{{ - 1} \over 3}}}{b^{{{ - 1} \over 3}}}\left( {{a^{{2 \over 3}}} - {b^{{2 \over 3}}}} \right)} \over {{a^{{2 \over 3}}} - {b^{{2 \over 3}}}}}\)

\( = {a^{{{ - 1} \over 3}}}{b^{{{ - 1} \over 3}}} = {1 \over {{a^{{1 \over 3}}}{b^{{1 \over 3}}}}} = {1 \over {\root 3 \of {ab} }}\) ( với điều kiện a ≠ b).

d) \({{{a^{{1 \over 3}}}\sqrt b  + {b^{{1 \over 3}}}\sqrt a } \over {\root 6 \of a  + \root 6 \of b }}\) \(= {{{a^{{1 \over 3}}}{b^{{1 \over 2}}} + {b^{{1 \over 3}}}{a^{{1 \over 2}}}} \over {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}}}\)

\(= {{{a^{{1 \over 3}}}{b^{{1 \over 2}}} + {b^{{1 \over 3}}}{a^{{1 \over 2}}}} \over {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}}} = {{{a^{{2 \over 6}}}{b^{{3 \over 6}}} + {b^{{2 \over 6}}}{a^{{3 \over 6}}}} \over {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}}}\)

\(= {{{a^{{2 \over 6}}}{b^{{2 \over 6}}}\left( {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}} \right)} \over {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}}} = {a^{{2 \over 6}}}{b^{{2 \over 6}}} = {a^{{1 \over 3}}}{b^{{1 \over 3}}} = \root 3 \of {ab} .\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan