Bài 5 trang 56 SGK Giải tích 12

Bình chọn:
3.5 trên 6 phiếu

Giải bài 5 trang 56 SGK Giải tích 12. Chứng minh rằng:

Đề bài

a) \(\left ( \frac{1}{3} \right )^{2\sqrt{5}}\) < \(\left ( \frac{1}{3} \right )^{3\sqrt{2}}\);

b) \(7^{\sqrt[6]{3}}\) > \(7^{\sqrt[3]{6}}\).

Phương pháp giải - Xem chi tiết

+) Đưa bài toán về dạng so sánh hai lũy thừa cùng cơ số: Với lũy thừa có cơ số lớn hơn \(1\) thì lũy thừa nào có số mũ lớn hơn thì số đó lớn hơn.

Ngược lại, với lũy thừa có cơ số lớn hơn \(0\) và nhỏ hơn \(1\) thì lũy thừa nào có số mũ lớn hơn thì lũy thừa đó nhỏ hơn.

+) Sử dụng công thức:  \(A\sqrt B  = \sqrt {{A^2}.B} .\)

+) So sánh hai căn bậc hai:  \(a > b > 0 \Leftrightarrow \sqrt a  > \sqrt b .\)

Lời giải chi tiết

a) \({\left( {\frac{1}{3}} \right)^{2\sqrt 5 }} < {\left( {\frac{1}{3}} \right)^{3\sqrt 2 }}.\)
Ta có: \(2\sqrt 5 = \sqrt {{2^2}.5} = \sqrt {20} ;\;\;3\sqrt 2 = \sqrt {{3^2}.2} = \sqrt {18} .\)
Vì \(20 > 18 \Rightarrow \sqrt {20} > \sqrt {18} \Leftrightarrow 2\sqrt 5 > 3\sqrt 2 .\)
Lại có: \(0 < \frac{1}{3} < 1 \Rightarrow {\left( {\frac{1}{3}} \right)^{2\sqrt 5 }} < {\left( {\frac{1}{3}} \right)^{3\sqrt 2 }}\;\;\left( {dpcm} \right).\)
b) \({7^{6\sqrt 3 }} > {7^{3\sqrt 6 }}.\)
Ta có: \(6\sqrt 3 = \sqrt {{6^2}.3} = \sqrt {108} ;\;\;3\sqrt 6 = \sqrt {{3^2}.6} = \sqrt {54} .\)
Vì \(108 > 54 \Rightarrow 6\sqrt 3 > 3\sqrt 6 .\)
Mà \(7 > 1 \Rightarrow {7^{6\sqrt 3 }} > {7^{3\sqrt 6 }}\;\;\left( {dpcm} \right).\)

 

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan