Bài 2 trang 55 SGK Giải tích 12

Bình chọn:
4 trên 4 phiếu

Giải bài 2 trang 55 SGK Giải tích 12. Cho a, b là những số thực dương. Viết các biểu thức dưới dạng lũy thừa với số mũ hữu tỉ:

Đề bài

Cho \(a, b\) là những số thực dương. Viết các biểu thức dưới dạng lũy thừa với số mũ hữu tỉ: 

a) \(a^{\frac{1}{3}}\). \(\sqrt{a}\);

b) \(b^{\frac{1}{2}}.b ^{\frac{1}{3}}. \sqrt[6]{b}\);

c) \(a^{\frac{4}{3}}\) : \(\sqrt[3]{a}\);

d) \(\sqrt[3]{b}\) : \(b^{\frac{1}{6}}\) ;

Phương pháp giải - Xem chi tiết

Sử dụng các công thức của hàm lũy thừa để tính: \(a^n.b^n=(ab)^n; \, \, a^m.a^n=a^{m+n}; (a^m)^n=a^{mn}; \, \, \frac{1}{a}=a^{-1};\\ \sqrt[n]{{{a^m}}} = {a^{\frac{m}{2}}};\;\;{a^m}:{a^n} = {a^{m - n}}.\)

Lời giải chi tiết

a)\(a^{\frac{1}{3}}\). \(\sqrt{a} = a^{\frac{1}{3}}. a^{\frac{1}{2}}=a^{\frac{1}{3}+\frac{1}{2}} = a^{\frac{5}{6}}\).

b) \(b^{\frac{1}{2}}.b ^{\frac{1}{3}}. \sqrt[6]{b} = b^{\frac{1}{2}}.b ^{\frac{1}{3}}. b^{\frac{1}{6}}= b^{\frac{1}{2}+ \frac{1}{3}+ \frac{1}{6}}= b\) .

c) \(a^{\frac{4}{3}}\) : \(\sqrt[3]{a}= a^{\frac{4}{3}}: a^{\frac{1}{3}}=a^{\frac{4}{3}-\frac{1}{3}} = a.\)

d) \(\sqrt[3]{b}\) : \(b^{\frac{1}{6}} = b^{\frac{2}{6}} : b^{\frac{1}{6}} =b^{\frac{2}{6}-\frac{1}{6}}= b^{\frac{1}{6}}\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan