Bài 4 trang 163 sách giáo khoa Đại số và Giải tích 11


4. Tìm đạo hàm của các hàm số sau:

4. Tìm đạo hàm của các hàm số sau:

a) y = x2 - x√x + 1;

b) y = √(2 - 5x -  x2);

c) y = \( \frac{x^{3}}{\sqrt{a^{2}-x^{2}}}\) ( a là hằng số);

d) y = \( \frac{1+x}{\sqrt{1-x}}\).

Lời giải:

a) y' = 2x - \( \left ( \sqrt{x}+x.\frac{1}{2\sqrt{x}} \right )\) = 2x - \( \frac{3}{2}\sqrt{x}\).

b) y' = \( \frac{\left ( 2-5x-x^{2} \right )'}{2.\sqrt{2-5x-x^{2}}}\) = \( \frac{-5-2x}{2\sqrt{2-5x-x^{2}}}\).

c) y' = \( \frac{\left ( x^{3} \right )'.\sqrt{a^{2}-x^{2}}-x^{3}.\left ( \sqrt{a^{2}-x^{2}} \right )}{a^{2}-x^{2}}\) = \( \frac{3x^{2}.\sqrt{a^{2}-x^{2}}-x^{3}.\frac{-2x}{2\sqrt{a^{2}-x^{2}}}}{a^{2}-x^{2}}\) = \( \frac{3x^{2}.\sqrt{a^{2}-x^{2}}+\frac{x^{4}}{\sqrt{a^{2}-x^{2}}}}{a^{2}-x^{2}}\) = \( \frac{x^{2}\left ( 3a^{2}-2x^{2} \right )}{\left ( a^{2} -x^{2}\right )\sqrt{a^{2}-x^{2}}}\).

d) y' = \( \frac{\left ( 1+x \right )'.\sqrt{1-x}-\left ( 1+x \right ).\left ( \sqrt{1-x} \right )'}{1-x}\) = \( \frac{\sqrt{1-x}-\left ( 1+x \right )\frac{-1}{2\sqrt{1-x}}}{1-x}\) = \( \frac{2\left ( 1-x \right )+1+x}{2\left ( 1-x \right )\sqrt{1-x}}\) = \( \frac{3-x}{2\left ( 1-x \right )\sqrt{1-x}}\).

Đã có lời giải Sách bài tập Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>>>> Học tốt lớp 11 các môn Toán, Lý, Anh, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu