Bài 4 trang 105 sgk hình học 11


Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc...

Bài 4. Cho tứ diện \(OABC\) có ba cạnh \(OA, OB, OC\) đôi một vuông góc. Gọi \(H\) là chân đường vuông góc hạ từ \(O\) tới mặt phẳng \((ABC)\). Chứng minh rằng:

a) H là trực tâm của tam giác \(ABC\);

b) \(\frac{1}{OH^{2}}=\frac{1}{OA^{2}}+\frac{1}{OB^{2}}+\frac{1}{OC^{2}}.\)

Hướng dẫn.

(h.3.32)

a) \(H\) là hình chiếu của \(O\) trên mp \((ABC)\) nên \(OH ⊥ (ABC) \Rightarrow OH ⊥ BC\).  (1)

Mặt khác: \(OA ⊥ OB\), \(OA ⊥ OC\)

\(\Rightarrow OA ⊥ (OBC) \Rightarrow OA ⊥ BC\)          (2)

Từ (1) và (2) suy ra \(BC ⊥ (AOH) \Rightarrow BC  ⊥ AH\). Chứng minh tương tự ta được \(AB ⊥ CH \)

\(\Rightarrow H\) là trực tâm của tam giác \(ABC\).

b) Trong mặt phẳng \((ABC)\) gọi \(E = AH ∩ BC\), \(OH ⊥ (ABC)\), \(AE ⊂ (ABC) \Rightarrow OH ⊥ AE\) tại \(H\);

\(OA ⊥ (ABC), OE ⊂ (ABC) \Rightarrow OA ⊥ OE\) tức là \(OH\) là đường cao của tam giác vuông \(OAE\).

Mặt khác \(OE\) là đường cao của tam giác vuông \(OBC\) 

Do đó: \(\frac{1}{OH^{2}}=\frac{1}{OA^{2}}+\frac{1}{OE^{2}} =\frac{1}{OA^{2}}+\frac{1}{OB^{2}}+\frac{1}{OC^{2}}.\)

Nhận xét: Biểu thức này là mở rộng của công thức tính đường cao thuộc cạnh huyền của tam giác vuông: \(\frac{1}{h^{2}}=\frac{1}{b^{2}}+\frac{1}{c^{2}} .\)

loigiaihay.com

 

 


Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu