Bài 2 trang 104 SGK Hình học 11


Cho tứ diện ABCD có hai mặt ABC và BCD là hai tam giác cân có chung cạnh đáy BC

Bài 2. Cho tứ diện \(ABCD\) có hai mặt \(ABC\) và \(BCD\) là hai tam giác cân có chung cạnh đáy \(BC\).Gọi \(I\) là trung điểm của cạnh \(BC\).

a) Chứng minh rằng \(BC\) vuông góc với mặt phẳng \(ADI\).

b) Gọi \(AH\) là đường cao của tam giác \(ADI\), chứng minh rằng \(AH\) vuông góc với mặt phẳng \(BCD\).

Giải

a) Tam giác \(ABC\) cân tại \(A\) nên ta có đường trung tuyến ứng với cạnh đáy đồng thời là đường cao do đó: \(AI\bot BC\)

Tương tự ta có: \(DI\bot BC\)

Ta có:

$$\left. \matrix{
AI \bot BC \hfill \cr
DI \bot BC \hfill \cr
AI \cap DI = {\rm{\{ }}I{\rm{\} }} \hfill \cr} \right\} \Rightarrow BC \bot (ADI)$$

b) Ta có \(AH\) là đường cao của tam giác \(ADI\) nên \(AH\bot DI\)

Mặt khác: \(BC\bot (ADI)\) mà \(AH\subset (ADI)\) nên \(AH\bot BC\)

Ta có 

$$\left. \matrix{
AH \bot BC \hfill \cr
AH \bot DI \hfill \cr
BC \cap DI = {\rm{\{ }}I{\rm{\} }} \hfill \cr} \right\} \Rightarrow AH \bot (BCD)$$

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu