Bài 6 trang 105 sgk hình học 11


Cho hình chóp S.ABCD có đáy là hình thoi ABCD và có cạnh SA vuông góc với mặt phẳng (ABCD)...

Bài 6. Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) và có cạnh \(SA\) vuông góc với mặt phẳng \((ABCD)\). Gọi \(I\) và \(K\) là hai điểm lần lượt lấy trên hai cạnh \(SB\) và \(SD\) sao cho \(\frac{SI}{SB}=\frac{SK}{SD}.\) Chứng minh:

a) \(BD\) vuông góc với \(SC\);

b) \(IK\) vuông góc với mặt phẳng \((SAC)\).

Giải

(H.3.34) 

a) \(ABCD\) là hình thoi nên \(AC\bot BD\)                        (1)

Theo giả thiết: \(SA\bot (ABCD)\Rightarrow SA\bot BD\)             (2)

Từ (1) và (2) suy ra \(BD ⊥ (SAC)\) \(\Rightarrow BD ⊥ SC\).

b) Theo giả thiết \(\frac{SI}{SB}=\frac{SK}{SD}\) theo định lí ta lét ta có \(IK//BD\)

Theo a) ta có: \(BD ⊥ (SAC)\) do đó \( IK ⊥ (SAC)\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu