Bài 27 trang 20 sgk Toán 9 tập 2

Bình chọn:
4.3 trên 45 phiếu

Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhật hai ẩn rồi giải:

27. Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về  dạng hệ hai phương trình bậc nhật hai ẩn rồi giải:

a) \(\left\{\begin{matrix} \frac{1}{x} - \frac{1}{y} = 1& & \\ \frac{3}{x} + \frac{4}{y} = 5& & \end{matrix}\right.\).  Hướng dẫn. Đặt u = \(\frac{1}{x}\), v = \(\frac{1}{y}\);

b) \(\left\{\begin{matrix} \frac{1}{x - 2} + \frac{1}{y -1} = 2 & & \\ \frac{2}{x - 2} - \frac{3}{y - 1} = 1 & & \end{matrix}\right.\) Hướng dẫn. Đặt u = \(\frac{1}{x - 2}\), v = \(\frac{1}{y - 1}\).

Bài giải:

a) Điền kiện \(x ≠ 0, y ≠ 0\).

Đặt \(u = \frac{1}{x}\), \(v = \frac{1}{y}\) ta được hệ phương trình ẩn u, v: \(\left\{\begin{matrix} u - v = 1 & & \\ 3u + 4v = 5& & \end{matrix}\right.\)

(1) ⇔ \(u = 1 + v\) (3)

Thế (3) vào (2): \(3(1 + v) +4v = 5\)

\(⇔ 3 + 3v + 4v = 5 ⇔ 7v =2 ⇔ v = \frac{2}{7}\)

Từ đó \(u = 1 + v = 1 + \frac{2}{7}\) = \(\frac{9}{7}\).

Suy ra hệ đã cho tương đương với: \(\left\{\begin{matrix} \frac{1}{x} = \frac{9}{7}& & \\ \frac{1}{y} = \frac{2}{7}& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x = \frac{7}{9}& & \\ y = \frac{7}{2}& & \end{matrix}\right.\)

b) Điều kiện \(x - 2 ≠ 0, y - 1 ≠ 0\) hay \( x ≠ 2, y ≠ 1\).

Đặt \(u = \frac{1}{x -2}\), \(v = \frac{1}{y -1}\) ta được hệ đã cho tương đương với:

\(\left\{\begin{matrix} u + v = 2 & & \\ 2u - 3v = 1 & & \end{matrix}\right.\)

(1) \(⇔ v = 2 - u\) (3)

Thế (3) vào (2): \(2u - 3(2 - u) = 1\)

⇔ \(2u - 6 + 3u = 1 ⇔ 5u = 7 ⇔ u = \frac{7}{5}\)

Từ đó \(v = 2 - \frac{7}{5}\) = \(\frac{3}{5}\).

Suy ra hệ đã cho tương đương với:

\(\left\{\begin{matrix} \frac{1}{x -2} = \frac{7}{5}& & \\ \frac{1}{y -1} = \frac{3}{5}& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x -2 = \frac{5}{7}& & \\ y - 1 = \frac{5}{3}& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x = \frac{5}{7}+ 2& & \\ y = \frac{5}{3}+1& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x = \frac{19}{7}& & \\ y = \frac{8}{3}& & \end{matrix}\right.\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan