Bài 23 trang 19 SGK Toán 9 tập 2

Bình chọn:
4 trên 55 phiếu

Giải bài 23 trang 19 SGK Toán 9 tập 2. Giải hệ phương trình sau:

Đề bài

Giải hệ phương trình sau:

\(\left\{\begin{matrix} (1 + \sqrt{2})x+ (1 - \sqrt{2})y = 5 \ (1) & & \\ (1 + \sqrt{2})x + (1 + \sqrt{2})y = 3\ (2) & & \end{matrix}\right.\)

Phương pháp giải - Xem chi tiết

+) Trừ vế với vế của phương trình \((1)\) cho phương trình \((2)\) ta được phương trình bậc nhất một ấn (ẩn \(y\).)

+) Giải phương trình một ẩn tìm được.

+) Thay nghiệm của phương trình một ẩn trên vào phương trình \((1)\) rồi suy ra nghiệm của hệ.

Lời giải chi tiết

Trừ từng vế hai phương trình (1) cho (2),  ta được:

\((1 - \sqrt{2})y - (1 + \sqrt{2})y = 5-3\)

\(⇔ (1 - \sqrt{2} - 1 - \sqrt{2})y = 2\)

\( \Leftrightarrow -2\sqrt{2}y = 2\)

\(\Leftrightarrow  y = \dfrac{-2}{2\sqrt{2}}\)

\( \Leftrightarrow  y =\dfrac{-\sqrt{2}}{2} \)   \((3)\)

Thay \((3)\) vào \((1)\) ta được:

\( (1 + \sqrt{2})x + (1 - \sqrt{2})\dfrac{-\sqrt{2}}{2} = 5\)

\(\Leftrightarrow (1 + \sqrt{2})x + \dfrac{-\sqrt{2}}{2} + \dfrac{\sqrt 2 . \sqrt 2}{2} = 5\)

\(\Leftrightarrow (1 + \sqrt{2})x + \dfrac{-\sqrt{2}}{2} + 1 = 5\)

\(\Leftrightarrow (1 + \sqrt{2})x =5- \dfrac{-\sqrt{2}}{2} - 1 \)

\(\Leftrightarrow (1 + \sqrt{2})x  = \dfrac{8 + \sqrt{2}}{2}\)

\(\Leftrightarrow x = \dfrac{8 + \sqrt{2}}{2(1 + \sqrt{2})}\)

\(\Leftrightarrow x = \dfrac{(8 + \sqrt{2}).(1-\sqrt 2)}{2(1 + \sqrt{2})(1- \sqrt 2)}\)

\(\Leftrightarrow x =  \dfrac{8 - 8\sqrt{2} + \sqrt{2} -2}{2(1 - 2)}\)

\(\Leftrightarrow x = \dfrac{6 - 7\sqrt{2}}{-2}\)

\(\Leftrightarrow x = \dfrac{ 7\sqrt{2}-6}{2}\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là: \( {\left(\dfrac{ 7\sqrt{2}-6}{2}; \dfrac{-\sqrt{2}}{2} \right)}\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan