Bài 15 trang 15 sgk Toán 9 tập 2

Bình chọn:
4.3 trên 31 phiếu

Giải hệ phương trình

15. Giải hệ phương trình \(\left\{\begin{matrix} x + 3y = 1 & & \\ (a^{2} + 1)x + 6y = 2a & & \end{matrix}\right.\) trong mỗi trường hợp sau:

a) \(a = -1\);             b) \(a = 0\);              c) \(a = 1\).

Bài giải:

a) Khi \(a = -1\), ta có hệ phương trình \(\left\{\begin{matrix} x + 3y = 1 & & \\ 2x+ 6y = -2 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x + 3y = 1 & & \\ x+ 3y = -1 & & \end{matrix}\right.\)

Hệ phương trình vô nghiệm (Do hai đường thẳng song  song với nhau).

b) Khi \(a = 0\), ta có hệ \(\left\{\begin{matrix} x + 3y = 1 & & \\ x+ 6y = 0 & & \end{matrix}\right.\)

Từ phương trình thứ nhất ta có \(x = 1 - 3y\).

Thế vào \(x\) trong phương trình thứ hai, ta được:

\(1 - 3y + 6y = 0 ⇔ 3y = -1 ⇔ y = -\frac{1}{3}\)

Thay \(y = -\frac{1}{3}\) vào \(x = 1 - 3y\) ta được

 \(x = 1 - 3(-\frac{1}{3}) = 2\)

Hệ phương trình có nghiệm \((x; y) = (2; -\frac{1}{3})\).

c) Khi \(a = 1\), ta có hệ  \(\left\{\begin{matrix} x + 3y = 1 & & \\ 2x+ 6y = 2 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x + 3y = 1 & & \\ x+ 3y = 1& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x = 1 -3y& & \\ y \in R& & \end{matrix}\right.\)

Hệ phương trình có vô số nghiệm.

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan