Bài 16 trang 16 sgk toán 9 tập 2.


Giải các hệ phương trình sau bằng phương pháp thế.

16. Giải các hệ phương trình sau bằng phương pháp thế.

a) \(\left\{\begin{matrix} 3x - y = 5 & & \\ 5x + 2y = 23 & & \end{matrix}\right.\);         b) \(\left\{\begin{matrix} 3x +5y = 1 & & \\ 2x -y =-8 & & \end{matrix}\right.\);      c) \(\left\{\begin{matrix} \frac{x}{y} = \frac{2}{3}& & \\ x + y - 10 = 0 & & \end{matrix}\right.\)

Bài giải:

a) \(\left\{\begin{matrix} 3x - y = 5 & & \\ 5x + 2y = 23 & & \end{matrix}\right.\)

Từ phương trình (1) ⇔ y = 3x - 5       (3)

Thế (3) vào phương trình (2): 5x + 2(3x - 5) = 23

⇔ 5x + 6x - 10 = 23 ⇔ 11x = 33 ⇔x = 3

Từ đó y = 3 . 3 - 5 = 4.

Vậy hệ có nghiệm (x; y) = (3; 4).

b) \(\left\{\begin{matrix} 3x +5y = 1 & & \\ 2x -y =-8 & & \end{matrix}\right.\)

Từ phương trình (2) ⇔ y = 3x + 8           (3)

Thế (3) vào (1): 3x + 5(2x + 8) = 1 ⇔ 3x + 10x + 40 = 1 ⇔ 13x = -39

                                                                                    ⇔ x = -3

Từ đó y = 2(-3) + 8 = 2.

Vậy hệ có nghiệm (x; y) = (-3; 2).

c) \(\left\{\begin{matrix} \frac{x}{y} = \frac{2}{3}& & \\ x + y - 10 = 0 & & \end{matrix}\right.\)


Phương trình (1) ⇔ x = \(\frac{2}{3}\)y         (3)

Thế (3) vào (2): \(\frac{2}{3}\)y + y = 10 ⇔ \(\frac{5}{3}\)y = 10

                                           ⇔ y = 6.

Từ đó x = \(\frac{2}{3}\) . 6 = 4.

Vậy nghiệm của hệ là (x; y) = (4; 6).

>>>>> Bí kíp học tốt các môn lớp 9 2017 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu