Bài 12 trang 15 SGK Toán 9 tập 2


Giải các hệ phương trình sau bằng phương pháp thế:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ phương trình sau bằng phương pháp thế:

LG a

\(\left\{\begin{matrix} x - y =3 & & \\ 3x-4y=2 & & \end{matrix}\right.\)

Phương pháp giải:

Rút \(x\) từ phương trình trên \(x - y = 3\) rồi thế vào phương trình còn lại. Giải hệ phương trình mới thu được ta tìm được nghiệm \(\left( {x;y} \right)\)

Lời giải chi tiết:

Rút \(x\) từ phương trình trên rồi thế vào phương trình dưới , ta được:

\(\left\{ \matrix{
x - y = 3 \hfill \cr 
3x - 4y = 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 3 + y \hfill \cr 
3\left( {3 + y} \right) - 4y = 2 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x = 3 + y \hfill \cr 
9 + 3y - 4y = 2 \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
x = 3 + y \hfill \cr 
- y = 2 - 9 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 3 + y \hfill \cr 
y = 7 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 3 + 7 \hfill \cr 
y = 7 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x = 10 \hfill \cr 
y = 7 \hfill \cr} \right.\)

Vậy hệ đã cho có nghiệm là \((x;y)=(10; 7)\).

LG b

\(\left\{\begin{matrix} 7x - 3y =5 & & \\ 4x+y=2 & & \end{matrix}\right.\)

Phương pháp giải:

Rút \(y\) từ phương trình dưới \(4x + y = 2\) rồi thế vào phương trình còn lại. Giải hệ phương trình mới thu được ta tìm được nghiệm \(\left( {x;y} \right)\)

Lời giải chi tiết:

Rút \(y\) từ phương trình dưới rồi thế vào phương trình trên, ta có:

\(\left\{ \begin{array}{l}7x - 3y = 5\\4x + y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}7x - 3y = 5\\y = 2 - 4x\end{array} \right.\)

 \( \Leftrightarrow \left\{ \begin{array}{l}y = 2 - 4x\\7x - 3.\left( {2 - 4x} \right) = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2 - 4x\\7x - 6 + 12x = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}y = 2 - 4x\\7x + 12x = 5 + 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2 - 4x\\19x = 11\end{array} \right.\) 

\( \Leftrightarrow \left\{ \begin{array}{l}y = 2 - 4x\\x = \dfrac{{11}}{{19}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{11}}{{19}}\\y = 2 - 4.\dfrac{{11}}{{19}}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{11}}{{19}}\\y =  - \dfrac{6}{{19}}\end{array} \right.\)

Vậy hệ có nghiệm duy nhất là \({\left(\dfrac{11}{19}; \dfrac{-6}{19} \right)}\)

LG c

\(\left\{\begin{matrix} x +3y =-2 & & \\ 5x-4y=11 & & \end{matrix}\right.\)

Phương pháp giải:

Rút \(x\) từ phương trình trên \(x + 3y =  - 2\) rồi thế vào phương trình còn lại. Giải hệ phương trình mới thu được ta tìm được nghiệm \(\left( {x;y} \right)\)

Lời giải chi tiết:

Rút \(x\) từ phương trình trên rồi thế vào phương trình dưới, ta có:

\(\left\{ \matrix{
x + 3y = - 2 \hfill \cr 
5x - 4y = 11 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - 2 - 3y \hfill \cr 
5\left( { - 2 - 3y} \right) - 4y = 11 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x = - 2 - 3y \hfill \cr 
- 10 - 15y - 4y = 11 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x = - 2 - 3y \hfill \cr 
- 15y - 4y = 11 + 10 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - 2 - 3y \hfill \cr 
- 19y = 21 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x = - 2 - 3y \hfill \cr 
y = -  \dfrac{ 21}{ 19} \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x = - 2 - 3. \dfrac{ - 21}{19} \hfill \cr 
y = - \dfrac{21}{19} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = \dfrac{25}{19} \hfill \cr 
y = - \dfrac{21}{19} \hfill \cr} \right.\)

Vậy hệ có nghiệm duy nhất là \({\left(\dfrac{25}{19}; \dfrac{-21}{19} \right)}\)

Loigiaihay.com


Bình chọn:
4.6 trên 158 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí