Bài 108 trang 42 sgk toán 6 tập 1


Một số có tổng các chữ số chia cho 9

Bài 108. Một số có tổng các chữ số chia cho \(9\) (cho \(3\)) dư \(m\) thì số đó chia cho \(9\) ( cho \(3\)) cũng dư \(m\).

Ví dụ: Số \(1543\) có tổng các chữ số bằng: \(1 + 5 + 4 + 3 = 13\). Số \(13\) chia cho \(9\) dư \(4\) chia cho \(3\) dư \(1\). Do đó số \(1543\) chia cho \(9\) dư \(4\), chia cho \(3\) dư \(1\).

Tìm số dư khi chia mỗi số sau cho \(9\), cho \(3\):

\(1546; 1526; 2468; 10^{11}\)

Bài giải:

Chỉ cần tìm dư trong phép chia tổng các chữ số cho \(9\), cho \(3\).

+) Vì \(1 + 5 + 4 + 6 = 16\) chia cho \(9\) dư \(7\) và chia cho \(3\) dư \(1\) nên \(1546\) chia cho \(9\) dư \(7\), chia cho \(3\) dư \(1\);

+) Vì \(1 + 5 + 2 + 7 = 15\) chia cho \(9\) dư \(6\), chia hết cho \(3\) nên \(1527\) chia cho \(9\) dư \(6\) chia hết cho \(3\);

Tương tự, \(2468\) chia cho \(9\) dư \(2\), chia cho \(3\) dư \(2\);

+) \(10^{11}\) có tổng các chữ số là \(1\) nên chia cho \(9\) dư \(1\), chia cho \(3\) dư \(1\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 6 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 6, mọi lúc, mọi nơi môn Toán, Văn, Anh. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu