Bài 1 trang 82 sách đại số và giải tích 11


Bài 1. Chứng minh rằng

Bài 1. Chứng minh rằng với n ε N*, ta có đẳng thức:

a) 2 + 5+ 8+.... + 3n - 1 = \( \frac{n(3n+1)}{2}\);

b) \( \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^{n}}=\frac{2^{n}-1}{2^{n}}\);

c) 12 + 22 + 32 +….+ n2 = \( \frac{n(n+1)(2n+1)}{6}\).

Hướng dẫn giải:

a) Với n = 1, vế trái chỉ có một số hạng là 2, vế phải bằng \( \frac{1.(3.1+1)}{2}\) = 2 

Vậy hệ thức a) đúng với n = 1.

Đặt vế trái bằng  Sn.

Giả sử đẳng thức a) đúng với n = k ≥ 1, tức là 

 Sk= 2 + 5 + 8 + …+ 3k – 1 = \( \frac{k(3k+1)}{2}\)

Ta phải chứng minh rằng a) cũng đúng với n = k + 1, nghĩa là phải chứng minh

Sk+1 = 2 + 5 + 8 + ….+ 3k -1 + (3(k + 1) – 1) =  \( \frac{(k+1)(3(k+1)+1)}{2}\)

Thật vậy, từ giả thiết quy nạp, ta có: Sk+1 = Sk + 3k + 2 = \( \frac{k(3k+1)}{2}\) + 3k + 2

= \( \frac{3k^{2}+k+6k+4}{2}\) \( =\frac{3(k^{2}+2k+1)+k+1}{2}=\frac{(k+1)(3(k+1)+1)}{2}\) (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức a) đúng với mọi n ε N*

b) Với n = 1, vế trái bằng \( \frac{1}{2}\), vế phải bằng \( \frac{1}{2}\), do đó hệ thức đúng.

Đặt vế trái bằng Sn.

Giả sử hệ thức b) đúng với n = k ≥ 1, tức là \( S_{k}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^{k}}=\frac{2^{k}-1}{2^{k}}\)

Ta phải chứng minh \( S_{k+1}=\frac{2^{k+1}-1}{2^{k+1}}\).

Thật vậy, từ giả thiết quy nạp, ta có: \( S_{k+1}=S_{k}+\frac{1}{2^{k+1}}=\frac{2^{k}-1}{2^{k}}+\frac{1}{2^{k+1}}\)

                                        = \( \frac{2^{k+1}-2+1}{2^{k+1}}=\frac{2^{k+1}-1}{2^{k+1}}\) (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức b) đúng với mọi n ε N*

c) Với n = 1, vế trái bằng 1, vế phải bằng \( \frac{1(1+1)(2+1)}{6}\) = 1 nên hệ thức c) đúng với n = 1.

Đặt vế trái bằng Sn.

Giả sử hệ thức c) đúng với n = k  ≥ 1, tức là

Sk = 12 + 22 + 32 + …+ k2 = \( \frac{k(k+1)(2k+1)}{6}\)

Ta phải chứng minh \( S_{k+1}=\frac{(k+1)(k+2)(2(k+1)+1)}{6}\)

Thật vậy, từ giả thiết quy nạp ta có: 

Sk+1 = Sk + (k + 1)2 =  \( \frac{k(k+1)(2k+1)}{6}+(k+1)^{2}\)                                                       = (k + 1).\( \frac{k(2k+1)+6(k+1)}{6}\)  = (k + 1)\( \frac{2k^{2}+k+6k+6}{6}\)

        \( =\frac{(k+1)(2k(k+2)+3)+3(k+2)}{6}=\frac{(k+1)(k+2)(2(k+1)+1)}{6}\) (đpcm)

Vậy theo nguyên lí quy nạp toán học, hệ thức c) đúng với mọi n ε N*    


>>>>> Học tốt lớp 11 các môn Toán, Lý, Anh, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu