Bài 5 trang 140 sgk giải tích 12

Bình chọn:
3.7 trên 10 phiếu

Bài 5. Cho z = a + bi là một số phức. Hãy tìm một phương trình bậc hai

Bài 5. Cho \(z = a + bi\) là một số phức. Hãy tìm một phương trình bậc hai với hệ số thực nhận \(z\) và \( \overline{z}\) làm nghiệm

Hướng dẫn giải:

Một phương trình bậc hai nhận \(z\) và \( \overline{z}\) làm nghiệm là

    \((x - z)(x -  \overline{z})= 0\) hay \(x^2 -(z + \overline{z})x + z \overline{z}= 0\).

Nếu \(z = a + bi\) thì \(z + \overline{z}= 2a\), \(z\overline{z} = a^2 +b^2\)

Vậy một phương trình bậc hai cần tìm là \({x^2}-2ax + {a^2} + {b^2} = 0\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan