Bài 20 trang 49 sgk Toán 9 tập 2


Giải các phương trình

Bài 20. Giải các phương trình:

a) \(25{x^2}-{\rm{ }}16{\rm{ }} = {\rm{ }}0\) ;                            

b) \(2{x^2} + {\rm{ }}3{\rm{ }} = {\rm{ }}0\)

c) \(4,2{x^2} + {\rm{ }}5,46x{\rm{ }} = {\rm{ }}0\);                       

d) \(4{x^2} - {\rm{ }}2\sqrt 3 x{\rm{ }} = {\rm{ }}1{\rm{ }} - {\rm{ }}\sqrt 3 \).

Bài giải:

a) \(25{x^2}{\rm{  - }}16 = 0 \Leftrightarrow 25{x^2} = 16 \Leftrightarrow {x^2} = {\rm{ }}{{16} \over {25}}\)

\(⇔ x = ±\)\(\sqrt{\frac{16}{25}}\) = ±\(\frac{4}{5}\)

b) \(2{x^2} + {\rm{ }}3{\rm{ }} = {\rm{ }}0\). Phương trình vô nghiệm vì vế trái là \(2{x^2} + {\rm{ }}3{\rm{ }} \ge  {\rm{ }}3\) còn vế phải bằng \(0\).

c) \(4,2{x^2} + {\rm{ }}5,46x{\rm{ }} = {\rm{ }}0{\rm{ }} \Leftrightarrow {\rm{ }}2x\left( {2,1x{\rm{ }} + {\rm{ }}2,73} \right){\rm{ }} = {\rm{ }}0\)

Vậy \(x = 0\) hoặc \(2,1x{\rm{ }} + {\rm{ }}2,73{\rm{ }} = {\rm{ }}0{\rm{ }} =  > {\rm{ }}x{\rm{ }} = {\rm{ }} - 1,3\).

d) \(4{x^2} - {\rm{ }}2\sqrt 3 x{\rm{ }} = {\rm{ }}1{\rm{ }} - {\rm{ }}\sqrt 3 \)

\(\Leftrightarrow {\rm{ }}4{x^2} - {\rm{ }}2\sqrt 3 x{\rm{ }}-{\rm{ }}1{\rm{ }} + {\rm{ }}\sqrt 3 {\rm{ }} = {\rm{ }}0\)

Có \(a = 4, b = -2\sqrt{3}, b’ = -\sqrt{3}, c = -1 + \sqrt{3}\)

\(\Delta' {\rm{ }} = {\rm{ }}{\left( { - \sqrt 3 } \right)^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}\left( { - 1{\rm{ }} + {\rm{ }}\sqrt 3 } \right){\rm{ }}\)

\(= {\rm{ }}3{\rm{ }} + {\rm{ }}4{\rm{ }} - {\rm{ }}4\sqrt 3 {\rm{ }} = {\rm{ }}{\left( {2{\rm{ }} - {\rm{ }}\sqrt 3 } \right)^2}\)

\({\rm{ }}\sqrt {\Delta '} {\rm{ }} = {\rm{ }}2{\rm{ }} - {\rm{ }}\sqrt 3 \)

\({x_1}\) = \(\frac{\sqrt{3} - 2+ \sqrt{3}}{4}\) = \(\frac{\sqrt{3} - 1}{2}\) , \({x_2}\) = \(\frac{\sqrt{3} +2 - \sqrt{3}}{4}\) = \(\frac{1}{2}\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu