Bài 17 trang 49 SGK Toán 9 tập 2

Bình chọn:
4.4 trên 46 phiếu

Giải bài 17 trang 49 SGK Toán 9 tập 2. Xác định a, b', c rồi dùng công thức nghiệm thu gọn giải các phương trình:

Đề bài

Xác định \(a, b', c\) rồi dùng công thức nghiệm thu gọn giải các phương trình:

a) \(4{x^2} + 4x + 1 = 0\);                       

b) \(13852{x^2} - 14x + 1 = 0\);

c) \(5{x^2} - 6x + 1 = 0\);                         

d) \( - 3{x^2} + 4\sqrt 6 x + 4 = 0\).

Phương pháp giải - Xem chi tiết

Xét phương trình: \(ax^2+bx+c=0\) (\(a \ne 0\)) với \(b=2b'\) và biệt thức: \(\Delta' =b'^2-4ac.\)

+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:

\(x_1=\dfrac{-b'+\sqrt{\Delta'}}{a};\ x_2=\dfrac{-b'-\sqrt{\Delta'}}{a}\)

+) Nếu \(\Delta' < 0\) thì phương trình vô nghiệm.

+) Nếu \(\Delta' =0\) thì phương trình có hai nghiệm kép: \(x_1=x_2=\dfrac{-b'}{a}\).

Lời giải chi tiết

a) \(4{x^2} + 4x + 1 = 0\)

Ta có: \(a = 4,\ b' = 2,\ c = 1\)

Suy ra \(\Delta'  = {2^2} - 4.1 = 0\)

Do đó phương trình có nghiệm kép:

\({x_1} = {x_2} = \dfrac{ - 2}{4} =  - \dfrac{1 }{ 2}\).

b) \(13852{x^2} - 14x + 1 = 0\)

Ta có: \(a = 13852,\ b' =  - 7,\ c = 1\)

Suy ra \(\Delta'  = {( - 7)^2} - 13852.1 =  - 13803 < 0\) 

Do đó phương trình vô nghiệm.

c) \(5{x^2} - 6x + 1 = 0\)

Ta có: \(a = 5,\ b' =  - 3,\ c = 1\)

Suy ra \(\Delta ' = {( - 3)^2} - 5.1 = 4 > 0\).

Do đó phương trình có hai nghiệm phân biệt:

\({x_1} = \dfrac{3 + \sqrt 4}{5}=\dfrac{5}{5} = 1\)

\({x_2} = \dfrac{3 - \sqrt 4}{5}=\dfrac{1}{5}.\)

d) \( - 3{x^2} + 4\sqrt 6 x + 4 = 0\)

Ta có: \(a =  - 3,\ b' = 2\sqrt 6 ,\ c = 4\)

Suy ra \(\Delta ' = {(2\sqrt 6 )^2} - ( - 3).4 = 36 > 0\)

Do đó phương trình có hai nghiệm phân biệt:

\({x_1} = \dfrac{ - 2\sqrt 6  + 6}{ - 3} = \dfrac{2\sqrt 6  - 6}{3}\)

\({x_2} = \dfrac{ - 2\sqrt 6  - 6}{ - 3} = \dfrac{2\sqrt {6 + 6} }{3}\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan