Bài 22 trang 49 sgk Toán 9 tập 2

Bình chọn:
4.6 trên 10 phiếu

Không giải phương trình,

Bài 22. Không giải phương trình, hãy cho biết mỗi phương trình sau có bao nhiêu nghiệm:

a)\(15{x^2} + {\rm{ }}4x{\rm{ }}-{\rm{ }}2005{\rm{ }} = {\rm{ }}0\);           

b) \( - {{19} \over 5}{x^2} - \sqrt 7 x + 1890 = 0\).   

Giải

Khi phương trình \(a{x^2} + bx + c = 0\) có \(a\) và \(c\) trái dấu thì \(ac < 0\), suy ra \(–ac > 0\); hơn nữa \({b^2} \ge {\rm{ }}0\). Do đó \(\Delta {\rm{ }} = {\rm{ }}{b^2}-{\rm{ }}4ac{\rm{ }} > {\rm{ }}0\). Vậy phương trình có hai nghiệm phân biệt.

Áp dụng:

a)    Phương trình \(15{x^2} + {\rm{ }}4x{\rm{ }}-{\rm{ }}2005{\rm{ }} = {\rm{ }}0\) có \(a = 15\), \(c = -2005\) trái dấu nhau nên phương trình có hai nghiệm phân biệt.

b)    Phương trình \( - {{19} \over 5}{x^2} - \sqrt 7 x + 1890 = 0\)  có

\(a \)= \(-\frac{19}{5}\) và \(c = 1890\) trái dấu nhau nên phương trình có hai nghiệm phân biệt.

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan