Bài 5 trang 37 sgk Toán 9 tập 2

Bình chọn:
4.6 trên 45 phiếu

Cho ba hàm số:

Bài 5. Cho ba hàm số:

\(y = {1 \over 2}{x^2};y = {x^2};y = 2{x^2}\)

a) Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.

b) Tìm ba điểm \(A, B, C\) có cùng hoành độ \(x = -1,5\) theo thứ tự nằm trên ba đồ thị. Xác định tung độ tương ứng của chúng.

c) Tìm ba điểm \(A', B', C'\) có cùng hoành độ \(x = 1,5\) theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của A và A', B và B', C và C'.

d) Với mỗi hàm số trên, hãy tìm giá trị của x để hàm số đó có giá trị nhỏ nhất.

Bài giải:

a) Vẽ đồ thị

  

b) Gọi \({y_A},{y_B},{y_C}\) lần lượt là tung độ các điểm \(A, B, C\) có cùng hoành độ \(x = -1,5\). Ta có:

\(\eqalign{
& {y_A} = {1 \over 2}{( - 1,5)^2} = {1 \over 2}.2,25 = 1,125 \cr
& {y_B} = {( - 1,5)^2} = 2,25 \cr
& {y_C} = 2{( - 1.5)^2} = 2.2,25 = 4,5 \cr} \)

c) Gọi \({y_{A'}},{y_{B'}},{y_{C'}}\)  lần lượt là tung độ các điểm \(A', B', C'\) có cùng hoành độ \(x = 1,5\). Ta có:

\(\eqalign{
& {y_{A'}} = {1 \over 2}{(1,5)^2} = {1 \over 2}.2,25 = 1,125 \cr
& {y_{B'}} = {(1,5)^2} = 2,25 \cr
& {y_{C'}} = 2{(1.5)^2} = 2.2,25 = 4,5 \cr} \)

Kiểm tra tính đối xứng: A và A', B và B', C và C' đối xứng với nhau qua trục tung Oy.

d) Với mỗi hàm số đã cho ta đều có hệ số \(a > 0\) nên O là điểm thấp nhất của đồ thị.

Vậy \(x = 0\) thì hàm số có giả trị nhỏ nhất.

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan