# Bài 5 trang 131 sgk toán 8 tập 2

Bình chọn:
3.8 trên 12 phiếu

## Chứng minh rằng:

Chứng minh rằng:

$${{{a^2}} \over {a + b}} + {{{b^2}} \over {b + c}} + {{{c^2}} \over {c + a}} = {{{b^2}} \over {a + b}} + {{{c^2}} \over {b + c}} + {{{a^2}} \over {c + a}}$$

Hướng dẫn làm bài:

Cách 1: Thực hiện phép cộng riêng từng vế:

VT: $$={{{a^2}} \over {a + b}} + {{{b^2}} \over {b + c}}{{{a^2}\left( {b + c} \right)\left( {c + a} \right) + {b^2}\left( {a + b} \right)\left( {c + a} \right) + {c^2}\left( {a + b} \right)\left( {b + c} \right)} \over {\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)}} + {{{c^2}} \over {c + a}}$$

$$={{{b^2}} \over {a + b}} + {{{c^2}} \over {b + c}} + {{{a^2}} \over {c + a}}$$

Tử bằng:

$$={a^2}\left( {bc + ab + {c^2} + ac} \right) + {b^2}\left( {ac + {a^2} + bc + ab} \right) + {a^2}\left( {ab + ac + {b^2} + bc} \right)$$

$$={a^2}bc + {a^3}b + {a^2}{c^2} + {a^3}c + a{b^2}c + {a^2}{b^2} + {b^3}c + a{b^3} + ab{c^3} + a{c^3} + {b^2}{c^2} + b{c^3}$$

$$={a^3}\left( {b + c} \right) + {a^2}\left( {bc + {b^2} + {c^2}} \right) + a\left( {{b^3} + {c^3} + {b^2}c + b{c^2}} \right) + bc\left( {bc + {b^2} + {c^2}} \right)\left( 1 \right)$$ (1)

VP: $$={a^3}\left( {b + c} \right) + {a^2}\left( {bc + {b^2} + {c^2}} \right) + a\left( {{b^3} + {c^3} + {b^2}c + b{c^2}} \right){{{b^2}\left( {b + c} \right)\left( {c + a} \right) + {c^2}\left( {a + b} \right)\left( {c + a} \right) + {a^2}\left( {a + b} \right)\left( {b + c} \right)} \over {\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)}} + bc\left( {bc + {b^2} + {c^2}} \right)\left( 1 \right)$$

$$={b^2}\left( {bc + ab + {c^2} + ac} \right) + {c^2}\left( {ac + {a^2} + bc + ab} \right) + {a^2}\left( {ab + ac + {b^2} + bc} \right)$$

$$={b^3}c + a{b^3} + {b^2}{c^2} + a{b^2}c + a{c^3} + {a^2}{c^2} + b{c^3} + ab{c^2} + {a^3}b + {a^3}c + {a^2}{b^2} + {a^2}bc$$

$$={a^3}\left( {b + c} \right) + {a^2}\left( {bc + {b^2} + {c^2}} \right) + a\left( {{b^3} + {c^3} + {b^2}c + b{c^2}} \right) + bc\left( {bc + {b^2} + {c^2}} \right)$$ (2)

So sánh (1) và (2) ta suy ra vế trái bằng vế phải. Vậy đẳng thức được  chứng minh.

Cách 2: Xét hiệu hai vế

$${a^3}\left( {b + c} \right) + {a^2}\left( {bc + {b^2} + {c^2}} \right) + a\left( {{b^3} + {c^3} + {b^2}c + b{c^2}} \right) + bc\left( {bc + {b^2} + {c^2}} \right){{{a^2}} \over {a + b}} - {{{b^2}} \over {a + b}} + {{{b^2}} \over {b + c}} - {{{c^2}} \over {b + c}} + {{{c^2}} \over {c + a}} - {{{a^2}} \over {c + a}}$$

$$={{\left( {a + b} \right)\left( {a - b} \right)} \over {a + b}} - {{\left( {b + c} \right)\left( {b - c} \right)} \over {b + c}} + {{\left( {c + a} \right)\left( {c - a} \right)} \over {c + a}}$$

$$=a - b + b - c + c - a = 0$$

Vậy  $${{{a^2}} \over {a + b}} + {{{b^2}} \over {b + c}} + {{{c^2}} \over {c + a}} = {{{b^2}} \over {a + b}} + {{{c^2}} \over {b + c}} + {{{a^2}} \over {c + a}}$$

Nhận xét: Cách 2 nhanh gọn hơn cách 1.

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan

Các bài khác cùng chuyên mục