Tuyensinh247.com giảm giá 50% chỉ duy nhất 1 ngày 20/11 - KM lớn nhất 2017
Xem ngay

Bắt đầu sau: 02:40:08

Bài 4 trang 18 sách sgk giải tích 12


Chứng minh rằng với mọi giá trị của tham số m, hàm số:

Bài 4. Chứng minh rằng với mọi giá trị của tham số \(m\), hàm số

\(y{\rm{ }} = {\rm{ }}{x^3}-{\rm{ }}m{x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1\)

luôn luôn có một điểm cực đại và một điểm cực tiểu.

Giải:

\(y{\rm{ }} = {\rm{ }}3{x^2}-{\rm{ }}2mx{\rm{ }}-{\rm{ }}2{\rm{ }},\Delta ' = {\rm{ }}{m^{2}} + {\rm{ }}6{\rm{ }} > {\rm{ }}0\) nên \(y’ = 0\) có hai nghiệm phân biệt và \(y’\) đổi dấu khi qua các nghiệm đó.

Vậy hàm số luôn có một cực đại và một cực tiểu.

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu