Bài 5 trang 18 sách sgk giải tích 12


Tìm a và b để các cực trị của hàm số:

Bài 5. Tìm a và b để các cực trị của hàm số

\(y=\frac{5}{3}a^{2}x^{3}+2ax^{2}-9x+b\)

đều là những số dương và \(x_{0}=-\frac{5}{9}\) là điểm cực đại.

Hướng dẫn giải:

- Xét a = 0 hàm số trở thành y = -9x + b. Trường hợp này hàm số không có cực trị.

- Xét a # 0. Ta có : y’ = 5a2x2 + 4ax – 9 ; y’= 0 ⇔ \(x=-\frac{1}{a}\) hoặc \(x=-\frac{9}{5a}\)

- Với a < 0 ta có bảng biến thiên :

 

Theo giả thiết \(x_{0}=-\frac{5}{9}\) là điểm cực đại nên \(\frac{1}{a}=-\frac{5}{9}\Leftrightarrow a=\frac{9}{5}\). Theo yêu cầu bài toán thì

\(y_{(CT)}=y\left ( -\frac{9}{5a} \right )=y(1)>0\Leftrightarrow \frac{5}{3}\cdot \left ( -\frac{9}{5} \right )^{2}+2\cdot \left ( -\frac{9}{5} \right )-9+b>0\Leftrightarrow b>\frac{36}{5}.\)

- Với a > 0 ta có bảng biến thiên :

Vì \(x_{0}=-\frac{5}{9}\)  là điểm cực đại nên \(-\frac{9}{5a}=-\frac{5}{9}\Leftrightarrow a=\frac{81}{25}\). Theo yêu cầu bài toán thì: \(y_{(ct)}=y\left ( \frac{1}{a} \right )=y\left ( \frac{25}{81} >0\Leftrightarrow \frac{5}{3}\right )\cdot \left ( \frac{81}{25} \right )^{2}\left ( \frac{25}{81} \right )^{3}+2.\frac{81}{25}\cdot \left ( \frac{25}{81} \right )^{2}-9\cdot \frac{25}{81}+b>0\Leftrightarrow b>\frac{400}{243}.\)

Vậy các giá trị a, b cần tìm là: \(\left\{\begin{matrix} a=-\frac{9}{5} & \\ b>\frac{36}{5} & \end{matrix}\right.\) hoặc \(\left\{\begin{matrix} a=\frac{81}{25} & \\ b>\frac{400}{243} & \end{matrix}\right.\).

 

>> Khai giảng Luyện thi ĐH-THPT Quốc Gia 2018 bám sát cấu trúc Bộ GD&ĐT bởi các Thầy Cô uy tín, nổi tiếng đến từ các trung tâm Luyện thi ĐH hàng đầu, các Trường THPT Chuyên và Trường Đại học..