Bài 10 trang 46 SGK Giải tích 12

Bình chọn:
3.7 trên 3 phiếu

Giải bài 10 trang 46 SGK Giải tích 12. Biện luận theo m số cực trị của hàm số

Đề bài

Cho hàm số: \(y = -x^4+ 2mx^2- 2m + 1\) ( \(m\) là tham số) có đồ thị \((C_m).\)

a) Biện luận theo m số cực trị của hàm số.

b) Với giá trị nào của m thì \((C_m)\) cắt trục hoành?
c) Xác định m để \((C_m)\) có cực đại, cực tiểu.

Phương pháp giải - Xem chi tiết

a) Số cực trị của hàm số là số nghiệm của phương trình: \(y'=0.\) Biện luận số cực trị của hàm số tức là biện luận số nghiệm của phương trình \(y'=0.\)

b) \((C_m)\) cắt trục hoành \(\Leftrightarrow \) phương trình \(y=f(x)=0\) có nghiệm.

c) Hàm số có cực đại và cực tiểu  \(\Leftrightarrow \) phương trình \(y'=f'(x)=0\) có 3 nghiệm phân biệt.

Lời giải chi tiết

a) \(y = -x^4+ 2mx^2- 2m + 1\) \((C_m).\)

Tập xác định: \(D =\mathbb R\)

Ta có: \(y' = -4x^3+ 4mx = -4x (x^2- m)\)

\(\Rightarrow y'=0 \Leftrightarrow -4x(x^2-m)=0 \Leftrightarrow  \left[ \begin{array}{l}x = 0\\{x^2} = m\end{array} \right..\)

+) Với \(m ≤ 0\) thì \(y’\) có một nghiệm \(x = 0\) và đổi dấu \(+\) sang \(–\) khi qua nghiệm này. Do đó hàm số có một cực đại là \(x = 0\)

+) Với \(m>0\) hàm số có 3 cực trị.

Do đó, hàm số có 2 cực đại tại \(x = ± \sqrt m\) và có một cực tiểu tại \(x = 0\)

b) Phương trình hoành độ giao điểm của đồ thị hàm số \((C_m)\) và trục hoành là: 

\(\begin{array}{l}
- {x^4} + 2m{x^2} - 2m + 1 = 0\\
\Leftrightarrow \left( {{x^4} - 1} \right) - 2m\left( {{x^2} - 1} \right) = 0\\
\Leftrightarrow \left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right) - 2m\left( {{x^2} - 1} \right) = 0\\
\Leftrightarrow \left( {{x^2} - 1} \right)\left( {{x^2} - 2m + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{x^2} - 1 = 0\\
{x^2} - 2m + 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \pm 1\\
{x^2} = 2m - 1
\end{array} \right..
\end{array}\)

Ta thấy phương trình hoành độ giao điểm luôn có nghiệm \(x = ± 1\) với mọi m nên \((C_m)\) luôn cắt trục hoành.

c) Theo lời giải câu a, ta thấy ngay: với \(m > 0\) thì đồ thị \((C_m)\) có cực đại và cực tiểu.

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan