Bài 1 trang 77 SGK Giải tích 12

Bình chọn:
3.6 trên 5 phiếu

Giải bài 1 trang 77 SGK Giải tích 12. Vẽ đồ thị của các hàm số:

Đề bài

Vẽ đồ thị của các hàm số:

a) \(y = 4^x\);

b) \(y= \left ( \frac{1}{4} \right )^{x}\).

Phương pháp giải - Xem chi tiết

Các bước khảo sát và vẽ đồ thị hàm số:

Bước 1: Tập xác định.

Bước 2: Sự biến thiên.

- Tính y', tìm các điểm mà tại đó y' bằng 0 hoặc không xác định.

- Xét dấu y' và suy ra các khoảng đơn điệu của đồ thị hàm số.

- Tính các giới hạn đặc biệt: Giới hạn tại vô cực và giới hạn tại các điểm mà hàm số không xác định.

- Tìm các tiệm cận của đồ thị hàm số (nếu có).

- Lập bảng biến thiên.

Bước 3: Đồ thị.

- Tìm giao điểm của đồ thị hàm số với các trục tọa độ (nếu có).

- Vẽ đồ thị hàm số dựa vào các yếu tố ở trên.

Lời giải chi tiết

a) Đồ thị hàm số \(y = 4^x\) 

*) Tập xác định: \(\mathbb R\)

*) Sự biến thiên:

\(y' = {4^x}\ln 4 > 0,\forall x \in \mathbb R\)

- Hàm số đồng biến trên \(\mathbb R\)

- Giới hạn đặc biệt:

   \(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } y = 0 \cr
& \mathop {\lim }\limits_{x \to + \infty } y = + \infty \cr} \)

Tiệm cận ngang: \(y=0\).

- Bảng biến thiên:

Đồ thị:

Đồ thị nằm hoàn toàn phía trên trục hoành, cắt trục tung tại các điểm \((0;1)\), đi qua điểm \((1;4)\) và qua các điểm \((\frac{1}{2}; 2)\), \((-\frac{1}{2}; \frac{1}{2})\), \((-1; \frac{1}{4})\).

b) Đồ thị hàm số \(y=\left ( \frac{1}{4} \right )^{x}\) 

*) Tập xác định: \(\mathbb R\)

*) Sự biến thiên:

\(y' = {\left( {\frac{1}{4}} \right)^x}.\ln \left( {\frac{1}{4}} \right) =  - {\left( {\frac{1}{4}} \right)^x}\ln 4 < 0\,\,\forall x \in R\)

- Hàm số nghịch biến trên \(\mathbb R\)

- Giới hạn:

  \(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } y = + \infty \cr
& \mathop {\lim }\limits_{x \to + \infty } y = 0 \cr} \)

Tiệm cận ngang \(y=0\)

- Bảng biến thiên:

*) Đồ thị: 

Đồ thị hàm số nằm hoàn toàn về phía trên trục hoành, cắt trục tung tại điểm (0; 1), đi qua điểm (1; \(\frac{1}{4}\)) và qua các điểm (\(-\frac{1}{2}\); 2), (-1;4). 

 

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan