Bài 32 trang 77 - Sách giáo khoa toán 8 tập 2


Bài 32. Trên một cạnh của góc xOy

Bài 32. Trên một cạnh của góc \(xOy\) (\(\widehat{xOy}=180^0\)), Đặt các đoạn thẳng \(OA= 5cm, OB= 16cm\). Trên cạnh thứ hai của góc đó, đặt các đoạn \(OC= 8cm, OD= 10cm\).

a) Chứng minh hai tam giác \(OCB\) và \(OAD\) đồng dạng.

b) Gọi giao điểm của các cạnh \(AD\) và \(BC\) là \(I\), chứng minh rằng hai tam giác \(IAB\) và \(ICD\) có góc các góc bằng nhau từng đôi một.

Giải

a) \(\frac{OA}{OC}\) = \(\frac{5}{8}\) ; \(\frac{OD}{OB}\) = \(\frac{10}{16}\) = \(\frac{5}{8}\)

 \(\Rightarrow \frac{OA}{OC}\) = \(\frac{OD}{OB}\)

Xét  \(∆OCB\) và \(∆OAD\) có:

+) \(\widehat O\) chung

+) \(\frac{OA}{OC}\) = \(\frac{OD}{OB}\)

 \(\Rightarrow ∆OCB ∽ ∆OAD\) ( trường hợp 2)

\( \Rightarrow \widehat {ODA} = \widehat {CBO}\) hay \(\widehat{CDI}\) = \(\widehat{IBA}\)

b) \(∆ICD\) và \(∆IAI\) có

 \(\widehat{CID}\) = \(\widehat{AIB}\) (hai góc đối đỉnh)   (1)

\(\widehat{CDI}\) = \(\widehat{IBA}\) (theo câu a)            (2)

Theo định lí tổng ba góc trong một tam giác ta có:

\(\eqalign{
& \widehat {CID} + \widehat {CDI} + \widehat {ICD} = {180^0} \cr
& \widehat {AID} + \widehat {IBA} + \widehat {IAB} = {180^0} \cr} \)

\( \Rightarrow \widehat {CID} + \widehat {CDI} + \widehat {ICD} = \widehat {AID} + \widehat {IBA} + \widehat {IAB}\)   (3)

Từ (1), (2) và (3) suy ra: \( \widehat {ICD}=\widehat {IAB}\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu