Bài 22 trang 46 sách giáo khoa toán 8 tập 1


Bài 22. Áp dụng quy tắc đổi dấu để các phân thức có cùng mẫu thức rồi làm tính cộng phân thức.

Bài 22. Áp dụng quy tắc đổi dấu để các phân thức có cùng mẫu thức rồi làm tính cộng phân thức.

a) \( \frac{2x^{2}-x}{x-1}+\frac{x+1}{1-x}+\frac{2-x^{2}}{x-1}\);         b) \( \frac{4-x^{2}}{x-3}+\frac{2x-2x^{2}}{3-x}+\frac{5-4x}{x-3}\).

Hướng dẫn giải:

a) \( \frac{2x^{2}-x}{x-1}+\frac{x+1}{1-x}+\frac{2-x^{2}}{x-1}\) = \( \frac{2x^{2}-x}{x-1}+\frac{2x-2x^{2}}{-(x-1)}+\frac{2-x^{2}}{x-1}=\frac{2x^{2}-x}{x-1}+\frac{-x-1}{x-1}+\frac{2-x^{2}}{x-1}=\frac{2x^{2}-x-x-1+2-x^{2}}{x-1}=\frac{x^{2}-2x+1}{x-1}=x-1\)

b) \( \frac{4-x^{2}}{x-3}+\frac{2x-2x^{2}}{3-x}+\frac{5-4x}{x-3}\) 

    \( =\frac{4-x^{2}}{x-3}+\frac{-(2x-2x^{2})}{x-3}+\frac{5-4x}{x-3}\)

    \( =\frac{4-x^{2}}{x-3}+\frac{2x^{2}-2x}{x-3}+\frac{5-4x}{x-3}\) 

    \( =\frac{4-x^{2}+2x^{2}-2x+5-4x}{x-3}=\frac{x^{2}-6x+9}{x-3}\)

    \( =\frac{(x-3)^{2}}{x-3}= x-3\)

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu