Giải bài 5 trang 63 sách bài tập toán 8 - Chân trời sáng tạo tập 2


Quan sát Hình 7. Chứng minh rằng \(\widehat {OBA} = \widehat {OAC}\).

Đã có lời giải SGK Toán lớp 9 - Chân trời sáng tạo (mới)

Đầy đủ - Chi tiết - Chính xác

Đề bài

Quan sát Hình 7. Chứng minh rằng \(\widehat {OBA} = \widehat {OAC}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về trường hợp đồng dạng thứ hai của hai tam giác (c.g.c) để chứng minh: Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đó đồng dạng với nhau.

Lời giải chi tiết

Tam giác OAB và tam giác OCA có: \(\frac{{OA}}{{OC}} = \frac{{OB}}{{OA}}\left( { = \frac{2}{3}} \right)\), góc O chung.

Do đó, $\Delta OAB\backsim \Delta OCA\left( c.g.c \right)$ nên \(\widehat {OBA} = \widehat {OAC}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K10 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.