Bài 7 trang 133 sgk toán 8 tập 2

Bình chọn:
3.9 trên 12 phiếu

Cho tam giác ABC (AB < AC). Tia phân giác của góc A cắt BC ở K. Qua trung điểm M của BC kẻ một tia song song với KA cắt đường thẳng AB ở D, cắt AC ở E. Chứng minh BD = CE.

Cho tam giác ABC (AB < AC). Tia phân giác của góc A cắt BC ở K. Qua trung điểm M của BC kẻ một tia song song với KA cắt đường thẳng AB ở D, cắt AC ở E. Chứng minh BD = CE.

Hướng dẫn làm bài:

 

AK là đường phân giác của tam giác ABC nên

\({{KB} \over {AB}} = {{KC} \over {AC}}\) (1)

Vì MD // AK nên: 

∆ABK  ∽ ∆DBM và ∆ECM  ∽ ∆ACK

Do đó:

\({{KB} \over {AB}} = {{BM} \over {BD}}\) và \( {{CM} \over {CE}} = {{KC} \over {AC}}\) (2)

Từ (1) và (2) ta có: \({{BM} \over {BD}} = {{CM} \over {CE}}\) (3)

Do BM = CM (giả thiết) nên từ (3) suy ra : BD = CE

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan