Bài 7 trang 133 sgk toán 8 tập 2


Cho tam giác ABC (AB < AC). Tia phân giác của góc A cắt BC ở K. Qua trung điểm M của BC kẻ một tia song song với KA cắt đường thẳng AB ở D, cắt AC ở E. Chứng minh BD = CE.

Cho tam giác ABC (AB < AC). Tia phân giác của góc A cắt BC ở K. Qua trung điểm M của BC kẻ một tia song song với KA cắt đường thẳng AB ở D, cắt AC ở E. Chứng minh BD = CE.

Hướng dẫn làm bài:

 

AK là đường phân giác của tam giác ABC nên

\({{KB} \over {AB}} = {{KC} \over {AC}}\) (1)

Vì MD // AK nên: 

∆ABK  ∽ ∆DBM và ∆ECM  ∽ ∆ACK

Do đó:

\({{KB} \over {AB}} = {{BM} \over {BD}}\) và \( {{CM} \over {CE}} = {{KC} \over {AC}}\) (2)

Từ (1) và (2) ta có: \({{BM} \over {BD}} = {{CM} \over {CE}}\) (3)

Do BM = CM (giả thiết) nên từ (3) suy ra : BD = CE

Đã có lời giải Sách bài tập Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>>>> Học tốt lớp 8 các môn Toán, Văn, Lý, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu