Bài 2 trang 132 sgk toán 8 tập 2

Bình chọn:
4.1 trên 17 phiếu

Cho hình thang ABCD (AB // CD) có hai đường chéo cắt nhau ở O và tam giác ABO là tam giác đều. Gọi E, F, G theo thứ tự là trung điểm của các đoạn thẳng OA, OD và BC. Chứng minh rằng tam giác EFG là tam giác đều.

Cho hình thang ABCD (AB // CD) có hai đường chéo cắt nhau ở O và tam giác ABO là tam giác đều. Gọi E, F, G theo thứ tự là trung điểm của các đoạn thẳng OA, OD và BC. Chứng minh rằng tam giác EFG là tam giác đều.

Hướng dẫn làm bài:

 

Tam giác ABO đều nên tam giác CDO cũng đều, suy ra OD = OC.

∆AOD = ∆BOC (c.g.c) =>AD = BC.

EF là đường trung bình của tam giác AOD nên:

 (1) \(EF = {1 \over 2}AD = {1 \over 2}BC\)   (1)

CF là đường trung tuyến của tam giác đều CDO nên CF ⊥ DO, nghĩa là .Trong tam giác vuông CFB, FG là đường trung tuyến ứng với cạnh huyền nên:

 (2) \(FG = {1 \over 2}BC\)

Chứng minh tương tự ta cũng có:

 (3) \(EG = {1 \over 2}BC\)

Từ (1), (2), (3) suy ra EF = GF = EG nên tam giác EFG là tam giác đều.

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan