Bài 82 trang 33 sgk toán 8 tập 1

Bình chọn:
4.3 trên 16 phiếu

Chứng minh:

Bài 82. Chứng minh:

a) \({x^2} - 2xy + {y^2} + 1 > 0\)  với mọi số thực \(x\) và \(y\);

b) \(x - {x^2} - 1 < 0\)  với mọi số thực \(x\).

Giải

a) \({x^2} - 2xy + {y^2} + 1 > 0\)  với mọi số thực \(x\) và \(y\)

Ta có \({x^2} - 2xy + {y^2} + 1 = \left( {{x^2} - 2xy + {y^2}} \right) + 1\)

=\({\left( {x - y} \right)^2} + 1 > 0\) do \({\left( {x - y} \right)^2} \ge 0\) với mọi \(x, y\).

b) \(x - {x^2} - 1 < 0\)  với mọi số thực \(x\).

Ta có \(x - {x^2} - 1 =  - \left( {{x^2} - x + 1} \right)\)

=\( - \left[ {{x^2} - 2.x.{1 \over 2} + {{\left( {{1 \over 2}} \right)}^2} + {3 \over 4}} \right]\)

= \( - \left[ {{x^2} - 2x.{1 \over 2} + {{\left( {{1 \over 2}} \right)}^2}} \right] - {3 \over 4}\)

=\( - {\left( {x - {1 \over 2}} \right)^2} - {3 \over 4} < 0\)  với mọi \(x\)

do \({\left( {x - {1 \over 2}} \right)^2} \ge 0\) nên \(-{\left( {x - {1 \over 2}} \right)^2} \le 0\)

loigiaihay.com

 

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan