Bài 83 trang 33 sgk toán 8 tập 1

Bình chọn:
4.8 trên 19 phiếu

Tìm n để phân thức chia hết cho 2n +1.

Bài 83. Tìm \(n \in\mathbb Z\)  để  \(2{n^2} - n + 2\)  chia hết cho \(2n +1\).

Giải

Ta có: \({{2{n^2} - n + 2} \over {2n + 1}} = {{2{n^2} + n - 2n - 1 + 3} \over {2n + 1}}\)

=\({{n\left( {2n + 1} \right) - \left( {2n + 1} \right) + 3} \over {2n + 1}} = {{\left( {2n + 1} \right)\left( {n - 1} \right) + 3} \over {2n + 1}} = n - 1 + {3 \over {2n + 1}}\)

Để \(2{n^2} - n + 2\) chia hết cho \(2n  + 1\) (với \(n \in\mathbb Z)\) thì \(2n + 1\) phải là ước của \(3\). Do đó:

\(2n + 1 = 1 =  > 2n = 0 =  > n = 0\)

\(2n + 1 =  - 1 =  > 2n =  - 2 =  > n =  - 1\) 

\(2n + 1 = 3 =  > 2n = 2 =  > n = 1\)

\(2n + 1 =  - 3 =  > 2n =  - 4 =  > n =  - 2\)

Vậy \(n = 0; -1; -2; 1\)

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan