Bài 81 trang 33 sgk toán 8 tập 1

Bình chọn:
4.8 trên 20 phiếu

Tìm x, biết:

Bài 81. Tìm \(x\), biết:

a) \({2 \over 3}x\left( {{x^2} - 4} \right) = 0\) ;                                     

b) \({\left( {x + 2} \right)^2} - \left( {x - 2} \right)\left( {x + 2} \right) = 0\) ;

c) \(x + 2\sqrt 2 {x^2} + 2{x^3} = 0\) .

Giải

a) \({2 \over 3}x\left( {{x^2} - 4} \right) = 0\)

    \({2 \over 3}x\left( {{x^2} - {2^2}} \right) = 0\)

     \({2 \over 3}x\left( {x - 2} \right)\left( {x + 2} \right) = 0\)

Hoặc \(x = 0\)

Hoặc \(x – 2 = 0 \Rightarrow x = 2\)

Hoặc \(x + 2 = 0 \Rightarrow   x = -2\)

Vậy \(x = 0,x =  - 2,x = 2\)

b) \({\left( {x + 2} \right)^2} - \left( {x - 2} \right)\left( {x + 2} \right) = 0\)

     \(\left( {x + 2} \right)\left[ {\left( {x + 2} \right) - \left( {x - 2} \right)} \right] = 0\)

     \(\left( {x + 2} \right)\left( {x + 2 - x + 2} \right) = 0\)

     \(\left( {x + 2} \right).4 = 0\)

    \(x + 2 = 0\)

    \(x =  - 2\)

Vậy \(x=-2\) 

c) \(x + 2\sqrt 2 {x^2} + 2{x^3} = 0\)

    \(x\left( {1 + 2\sqrt 2 x + 2{x^2}} \right) = 0\)

    \(x(1^2 + 2\sqrt 2 x .1+ {\left( {\sqrt 2 x} \right)^2}) = 0\)

    \(x{\left( {1 + \sqrt 2 x} \right)^2} = 0\)

Hoặc \(x = 0\)

Hoặc \({\left( {1 + \sqrt 2 x} \right)^2} = 0  \Rightarrow 1 + \sqrt 2 x = 0\Rightarrow  x =  - {1 \over {\sqrt 2 }}\)

Vậy \(x = 0,x =  - {1 \over {\sqrt 2 }}\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan