Bài 22 trang 17 sgk toán 8 tập 2


Bài 22. Bằng cách phân tích vế trái thành nhân tử, giải các phương trình sau:

Bài 22. Bằng cách phân tích vế trái thành nhân tử, giải các phương trình sau:

a) 2x(x - 3) + 5(x - 3) = 0                       b) (x2 - 4) + (x - 2)(3 - 2x) = 0

c) x3 – 3x2 + 3x – 1 = 0;                          d) x(2x - 7) - 4x + 14 = 0

e) (2x – 5)2 – (x + 2)2 = 0;                       f) x2 – x – 3x + 3 = 0

Hướng dẫn giải:

a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0

1) x - 3 = 0 ⇔ x = 3

2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5

Vậy tập nghiệm của phương trình là S = {3;-2,5}

b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0

⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0

1) x - 2 = 0 ⇔ x = 2

2) -x + 5 = 0 ⇔ x = 5

Vậy tập nghiệm của phương trình là S = {2;5}

c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.

Vậy tập nghiệm của phương trình là x = 1

d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0

                                     ⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0

1) x - 2 = 0 ⇔ x = 2

2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 

Vậy tập nghiệm của phương trình là S = {2;}

e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0

1) x - 7 = 0 ⇔ x = 7

2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1

f) x2 – x – 3x + 3 = 0 ⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0 

⇔ x = 3 hoặc x = 1

Vậy tập nghiệm của phương trình là S = {1;3}

>>>>> Bí kíp học tốt các môn lớp 8 2017 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu

Bài viết liên quan