Đề kiểm tra 1 tiết chương 4: Giới hạn - Đề số 2

Số câu: 25 câuThời gian làm bài: 45 phút

Phạm vi kiểm tra: Từ bài giới hạn dãy số đến hết bài hàm số liên tục

Câu 1 Thông hiểu

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{3 - \sqrt {9 - x} }}{x}\,\,\,khi\,\,0 < x < 9\\m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\\\dfrac{3}{x}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 9\end{array} \right.\). Tìm \(m\) để \(f\left( x \right)\) liên tục trên \(\left[ {0; + \infty } \right)\).


Câu 2 Thông hiểu

Hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - x\cos x\,\,\,khi\,\,x < 0\\\dfrac{{{x^2}}}{{1 + x}}\,\,\,\,\,\,\,\,\,\,khi\,\,0 \le x < 1\\{x^3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 1\end{array} \right.\) 


Câu 3 Thông hiểu

Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt[3]{{3{x^3} - 1}} + \sqrt {{x^2} + 2} } \right)\) là:


Câu 4 Nhận biết

Cho ${u_n} = \dfrac{{1 - 4n}}{{5n}}$. Khi đó $\lim {u_n}$bằng?


Câu 6 Thông hiểu

Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{2\sqrt {1 + x}  - \sqrt[3]{{8 - x}}}}{x}\) là:


Câu 8 Thông hiểu

Giá trị \(\lim \dfrac{{{{\left( { - 1} \right)}^n}}}{{n\left( {n + 1} \right)}}\) bằng


Câu 9 Thông hiểu

Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) có \(\lim {u_n} = \sqrt 3 \) và \(\lim {v_n} =  - 2\sqrt 3 \). Giới hạn \(I = \lim \left( {{u_n} + {v_n}} \right)\) thỏa mãn điều kiện nào dưới đây?


Câu 12 Nhận biết

Kết quả của giới hạn $\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \dfrac{{\left| {3x + 6} \right|}}{{x + 2}}$ là:


Câu 13 Thông hiểu

Giới hạn $\lim \dfrac{{{2^{n + 1}} - {{3.5}^n} + 5}}{{{{3.2}^n} + {{9.5}^n}}}$bằng?


Câu 14 Nhận biết
Câu 16 Vận dụng

Giá trị của \(C = \lim \dfrac{{\sqrt[4]{{3{n^3} + 1}} - n}}{{\sqrt {2{n^4} + 3n + 1}  + n}}\) bằng:


Câu 17 Vận dụng

Cho dãy số $({u_n})$ xác định bởi  $\left\{ \begin{align} & u_{1}=2 \\  & {u_{n+1}}=\dfrac{{{u}_{n}}+1}{2},(n\ge 1)  \end{align} \right.$ Khi đó mệnh đề nào sau đây là đúng?


Câu 18 Vận dụng

Tính $\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + x + 3}  - x} \right)$ bằng?


Câu 19 Vận dụng

Tính$\mathop {\lim }\limits_{x \to  - \infty } (x - 1)\sqrt {\dfrac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} $ bằng?


Câu 20 Vận dụng

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} - 1}}{{x - 1}} & {\rm{khi}}\,\,x < 3,\,\,x \ne 1\\4 & {\rm{khi}}\,\,x = 1\\\sqrt {x + 1}  & {\rm{khi}}\,\,x \ge 3\end{array} \right.\). Hàm số \(f\left( x \right)\) liên tục tại:


Câu 21 Vận dụng

Tìm giá trị thực của tham số \(m\) để hàm số $f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\dfrac{{{x^3} - {x^2} + 2x - 2}}{{x - 1}}}&{{\rm{khi }}x \ne 1}\\{3x + m}&{{\rm{khi }}x = 1}\end{array}} \right.$ liên tục tại \(x = 1.\)


Câu 22 Vận dụng

Cho $a$ và $b$ là các số thực khác $0.$ Tìm hệ thức liên hệ giữa $a$ và $b$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {ax + 1}  - 1}}{x}\,\,\,khi\,\,x \ne 0\\4{x^2} + 5b\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\) liên tục tại $x = 0.$


Câu 23 Vận dụng cao

Cho dãy số $({u_n})$xác định bởi
\(\left\{ \begin{array}{l}{u_1} = \dfrac{1}{2}\\{u_{n + 1}} = \dfrac{{\sqrt {u_n^2 + 4{u_n}} + {u_n}}}{2},\left( {n \ge 1} \right)\end{array} \right.\)
Đặt ${v_n} = \sum\limits_{i = 1}^n {\dfrac{1}{{u_{_i}^2}}}, $ khẳng định nào sau đây đúng?


Câu 24 Vận dụng cao

Tính $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}}{x}$


Câu 25 Vận dụng cao

Cho \(a, b\) là các số thực khác \(0\). Tìm hệ thức liên hệ giữa \(a\) và \(b\) để hàm số sau liên tục tại \(x = 0\): \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {ax + 1} \sqrt[3]{{bx + 1}} - 1}}{x}\,\,\,\,\,khi\,x \ne 0\\a + b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\)