Đề kiểm tra 1 tiết chương 2: Tổ hợp xác suất - Đề số 2

Số câu: 25 câuThời gian làm bài: 45 phút

Phạm vi kiểm tra: Toàn bộ kiến thức chương tổ hợp xác suất.

Câu 1 Nhận biết

Chọn ngẫu nhiên một số tự nhiên bé hơn $1000$. Xác suất để số đó chia hết cho $5$ là:


Câu 2 Nhận biết

Giả sử $A$ và $B$ là hai biến cố cùng liên quan đến phép thử $T$. Khẳng định nào trong các khẳng định sau là đúng?

1) Nếu $A $ và $B$ là hai biến cố độc lập thì \(P(A \cup B) = P(A) + P(B)\) .

2) Nếu $A$ và $B$ là hai biến cố xung khắc thì \(P(A \cup B) = P(A) + P(B)\) .

3) \(P(AB) = P(A).P(B)\).


Câu 4 Thông hiểu

Cho hai tập hợp \(A,B\) rời nhau có số phần tử lần lượt là \({n_A},{n_B}\). Số phần tử của tập hợp \(A \cup B\) là:


Câu 5 Thông hiểu

Một lớp có $8$ học sinh được bầu chọn vào 3 chức vụ khác nhau: lớp trưởng, lớp phó và bí thư (không được kiêm nhiệm). Số cách lựa chọn khác nhau sẽ là:


Câu 7 Thông hiểu

Xếp ngẫu nhiên $3$ nam và $3$ nữ ngồi vào $6$ ghế xếp thành hàng ngang. Xác suất để nam nữ ngồi xen kẽ nhau là:


Câu 8 Thông hiểu

Gieo hai con xúc sắc và gọi kết quả xảy ra là tích của số chấm xuất hiện ở mỗi xúc sắc . Số phần tử của không gian mẫu là:


Câu 10 Nhận biết

Số tổ hợp chập \(k\) của \(n\) phần tử là:


Câu 11 Thông hiểu
Câu 12 Thông hiểu

Với \(\dfrac{{\left( {n + 1} \right)!}}{{\left( {n - 1} \right)!}} = 72\) thì giá trị của $n$ là:


Câu 13 Thông hiểu

Bạn muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có $8$ màu khác nhau, các cây bút chì cũng có $8$ màu khác nhau. Như vậy bạn có bao nhiêu cách chọn


Câu 14 Vận dụng

Từ các chữ số $1,2,3,4,5,6,7$ lập được bao nhiêu số tự nhiên gồm $4$ chữ số khác nhau và là số chẵn?


Câu 15 Vận dụng

Từ $5$ bông hoa hồng vàng, $3$ bông hoa hồng trắng và $4$ bông hoa hồng đỏ (các bông hoa xem như đôi một khác nhau), người ta muốn chọn một bó hồng gồm $7$ bông, hỏi có bao nhiêu cách chọn bó hoa trong đó có ít nhất $3$ bông hoa hồng vàng và $3$ bông hoa hồng đỏ?


Câu 16 Vận dụng

Số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}C_y^x:C_{y + 2}^x = \dfrac{1}{3}\\C_y^x:A_y^x = \dfrac{1}{{24}}\end{array} \right.\) là:


Câu 17 Vận dụng

Số nguyên dương \(n\) thỏa mãn \(C_n^0 + 2C_n^1 + {2^2}C_n^2 + {2^3}C_n^3 + ... + {2^{n - 2}}C_n^{n - 2} + {2^{n - 1}}C_n^{n - 1} + {2^n}C_n^n = 243\) là:


Câu 18 Vận dụng

Hệ số của số hạng chứa \({x^{10}}\) trong khai triển nhi thức \({\left( {x + 2} \right)^n}\) biết n là số nguyên dương thỏa mãn \({3^n}C_n^0 - {3^{n - 1}}C_n^1 + {3^{n - 2}}C_n^2 - ... + {\left( { - 1} \right)^n}C_n^n = 2048\) là:


Câu 19 Vận dụng

Gieo đồng xu hai lần liên tiếp. Xác suất để sau hai lần gieo thì mặt ngửa xuất hiện ít nhất một lần.


Câu 20 Vận dụng cao

Gieo một con xúc sắc cân đối và đồng chất \(5\) lần liên tiếp. Tính xác suất để tổng số chấm ở hai lần gieo đầu bằng số chấm ở lần gieo thứ ba.


Câu 21 Vận dụng

Gieo ngẫu nhiên bốn đồng xu cân đối và đồng chất. Xác suất để cả bốn lần gieo đều xuất hiện mặt sấp là:


Câu 22 Vận dụng

Một chiếc tàu khoan thăm dò dầu khí trên thềm lục địa có xác suất khoan trúng túi dầu là $0,4$. Xác suất để trong $5$ lần khoan độc lập, chiếc tàu đó khoan trúng túi dầu ít nhất một lần.


Câu 23 Vận dụng

Xác suất bắn trúng đích của một người bắn súng là $0,6$. Xác suất để trong ba lần bắn độc lập người đó bắn trúng đích đúng một lần.


Câu 24 Vận dụng cao

Với \(k,n \in N,2 \le k \le n\) thì giá trị của biểu thức $A = C_n^k + 4C_n^{k - 1} + 6C_n^{k - 2} + 4C_n^{k - 3} + C_n^{k - 4} - C_{n + 4}^k + 1$ bằng?


Câu 25 Vận dụng cao

Gieo ba con xúc sắc cân đối, đồng chất. Xác suất để số chấm xuất hiện trên ba con xúc sắc đó bằng nhau là: